Software Redundancy
for SIMATIC S7-300 and S7-400

Help topics from S7_SWR_B.HLP
of 12/99
Contents

Tips on Using This Description To Best Effect... 5

1 Introduction ... 6
 1.1 Why Use a System with Redundant Software Backup? ... 6
 1.2 What Hardware is Required? ... 7
 1.3 What Software is Required? ... 8
 1.4 In What Situations Can Redundant Software Backup Be Used? 9

2 How Redundant Backup Software works .. 10
 2.1 How Does a System with Redundant Software Backup Work?10
 2.2 Structure of Status Word for Redundant Software Backup ..14
 2.3 Structure of Control Word for Redundant Software Backup15
 2.4 Rules for the Use of Redundant Software Backup ..16

3 Redundant Software Backup Blocks .. 19
 3.1 The Library of Blocks for Redundant Software Backup ... 19
 3.2 Contents of the Block Packages ... 20
 3.3 Overview of Blocks for Redundant Software Backup .. 21
 3.4 FC 100 'SWR_START' ..22
 3.5 FB 101 'SWR_ZYK' ...26
 3.6 FC 102 'SWR_DIAG' ..28
 3.7 FB 103 'SWR_SFCCOM', FB 104 'SW_AG_COM' and FB 105 'SWR_SFBCOM'29
 3.8 Data Blocks DB_WORK_NO, DB_SEND_NO and DB_RCV_NO30
 3.9 Data Blocks DB_A_B and DB_B_A for Exchange of Non-Duplicated Data31
 3.10 Data Block DB_COM_NO ...32
 3.11 Examples Using Minimum Configuration for Quick Introduction33
 3.12 Technical Data of the Blocks ..35

4 References and Supplementary Information ... 36
 4.1 Features and Characteristics of Redundant Software Backup 36
 4.2 Change-over from Master to Reserve .. 37
 4.3 Duration of Master-Reserve Change-over .. 38
 4.3.1 Duration of Data Transfer from Master to Reserve ..39
 4.3.2 Switch-over Times for ET200M DP Slaves ..40
 4.3.3 Fault Detection Time for Faults on the Redundant-backup System41
 4.4 Networks Via Which The Two Stations Can Be Linked ...43
 4.5 Altering Configuration and Application Program in RUN Mode44
 4.6 Special Feature of Programming in CFC ...46
Tips on Using This Description To Best Effect

The information below describes how you use the “Redundant-Backup Software” package to increase the availability of SIMATIC S7 automation systems.

The description of the product is presented in the form of Online Help. The advantage of this for you as the user is that you can look up context-sensitive information during the actual process of programming and configuring with STEP 7 on your PC/PU. There is no need to consult a separate printed document.

Nevertheless, for those customers who still prefer to read the printed page, we have also put all the Help topics together in a single document that you can view and print out using the Acrobat Reader. That document can be found on the CD and is called ‘SWR_English.PDF’.

In order to be able to open the document, you need Acrobat Reader V2.1 or later. This is a license-free product made by Adobe and can be installed from the subdirectory S7 Manual of the STEP 7 directory if it has not already been installed at the same time as STEP7.

We have also provided the same document in Word for Windows format for those customers who prefer to work in Word for Windows. This document can also be found on the CD and is called ‘SWR_English.DOC’.

To open the document you require Word for Windows Version 6.0 or later.

Target Group

This description is aimed at readers who are already familiar with our S7-300/S7-400 automation systems and the ET 200M distributed I/O device. It also assumes a basic knowledge of working with our STEP 7 programming software.

Recommended Procedure

This description consists of a number of self-contained topics. We recommend that you first read the “Introduction” and “How Redundant Software Backup Works” sections. They outline the basic principles of using redundant software backup.

If you already have extensive experience of working with STEP 7, you might like to take a look at our specimen projects with example solutions for the S7-300 and S7-400. A simplified application clearly demonstrates all the steps required.

If, however, you would first like to familiarize yourself with the blocks and the parameters required, then please read the section “Redundant Software Backup Blocks”. This provides all the essential information about the blocks at a glance. It also contains two example solutions for the S7-300 and S7-400 for which we have provided ready-made projects with basic configurations. Following installation you will find the projects in the STEP 7 project directory. They can be adapted as necessary to your own requirements.

The section “References and Supplementary Information” deals with a number of separate topics that are intended to provide more in-depth information and which offer answers to specific questions. It describes the method of operation and components required for constructing a system with redundant software backup.
1 Introduction

1.1 Why Use a System with Redundant Software Backup?

Production Down Times Cost Time and Money
The increasing level of automation of industrial plants in order to increase productivity and quality also increases dependence on the availability of the automation systems. The failure of an automation system (e.g. due to CPU failure) can be extremely expensive due to the loss of production and plant idle time.

In many areas of application, the demands placed on redundant backup quality or the size of the installations that require automation systems with redundant backup are not such that the use of a special system offering very high levels of availability is not absolutely necessary.

In many cases, straightforward software mechanisms that enable a failed control sequence to be taken over by a backup system are sufficient.

Such requirements are fully satisfied by the use of redundant software backup.

Redundant Software Backup Means Greater Availability
The redundant-backup software can run on standard S7-300 and S7-400 automation systems. Greater availability can be provided for single-channel local peripherals on an ET 200M with redundant-backup slave interface (redundant IM 153-3 or IM 152-2). The DP slave interfaces have two DP interfaces one of which is connected to the DP master system on station A and one to the DP master system on station B.

In order that control tasks subject to high availability requirements can be continued in the event of failures, both automation systems have redundant software backup.

“Control tasks subject to high availability requirements” refer to that part of the application program for which it is absolutely essential that they are taken over by the reserve station if the master station fails. This may be the complete application program or only a certain part of it.

Redundant software backup can be used to manage the following types of failure:

- Failure of CPU components (power supply unit, rear-panel bus, DP master)
- CPU failure due to hardware or software faults
- Breaks in the bus cable for the redundant-backup link or the redundant-backup DP slave interface
- Faults on a PROFIBUS module in the redundant-backup slave interface (e.g. IM 153-3)
1.2 What Hardware is Required?

The central hardware components required are two S7-300 or S7-400 stations or one of each. On each station is a CPU and a connection for a DP master system.

The two stations are linked by means of a bus system via which they can exchange information.

Connection to the peripheral devices is made via two DP master systems - one on station A and on one station B.

ET 200M distributed I/O devices with redundant-backup DP slave interfaces (e.g. IM 153-3) are connected to the two DP master systems. The DP slave interface makes it possible to switch from the first to the second interface in the event of a fault, thereby enabling process status data to be passed to the peripherals by the second DP master.

Hardware Layout

![Diagram showing hardware layout with S7-300/S7-400 stations, PROFIBUS-DP connections, ET 200M distributed I/O devices, and an operator panel/display unit.]

Optional extension
1.3 What Software is Required?

STEP 7 Programming Software

All you need for configuring the blocks for redundant software backup is the STEP 7 Basic Package Version 4.02 or later. Only that and later versions support configuration of the IM 153-3 redundant-backup slave interface (configuration of the IM 153-2 redundant-backup slave interface requires STEP 7 Version 5.0 SP3 or later).

<table>
<thead>
<tr>
<th>Description of product</th>
<th>Task used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 7 Basic Package Version V4.02 or later or STEP 7 Version 5.0 SP3 or later</td>
<td>Configuring and programming S7-300 and S7-400</td>
</tr>
</tbody>
</table>

Optional **standard tools for SIMATIC NET and SIMATIC HMI**

It goes without saying that you can use all of the optional engineering and configuring tools on systems with redundant software backup.

The table below details the standard tools also used on the specimen projects in our example applications.

<table>
<thead>
<tr>
<th>Description of product</th>
<th>Task used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCM S7 for PROFIBUS (compatible with STEP 7 V4.02.). From Version 5.0 on, STEP 7 includes NCM S7.</td>
<td>Configuring SIMATIC NET communication processors for PROFIBUS networks</td>
</tr>
<tr>
<td>ProTool version 3.01 or later</td>
<td>Configuring SIMATIC HMI operator panels</td>
</tr>
<tr>
<td>WinCC version 4.02 or later</td>
<td>Graphical configuration of WinCC SIMATIC HMI operator stations</td>
</tr>
</tbody>
</table>
1.4 In What Situations Can Redundant Software Backup Be Used?

Redundant software backup can be used in any situation where centralized and particularly important system components require greater levels of availability and where brief unavailability (lasting a few processing cycles) of the system while switching from one station to another (from master to reserve station) can be tolerated by the process. The following are examples of such system components:

- process control for water coolant circuits
- process control for drinking water treatment plants
- systems for the monitoring and control of traffic flow
- systems for the monitoring and control of liquid levels
- systems for the monitoring and control of the temperature in cold stores
- systems for the monitoring and control of the temperature in furnaces

See also:

Features and Characteristics of Redundant Software Backup
Switching from Master to Reserve
2 How Redundant Backup Software works

2.1 How Does a System with Redundant Software Backup Work?

Definition
A system with redundant software backup is characterized by

- having two S7-300 or S7-400 stations, or one of each, that are linked by means of a bus system,
- having a redundant-backup application program that is loaded on both stations,
- having two DP master systems to which ET 200M distributed I/O devices with redundant-backup
 DP slave interfaces (e.g. IM 153-3) are connected,
- use of the blocks contained in the “Redundant-Backup Software” package.

Principle of Redundant Software Backup
The flow chart below shows the basic principles of operation of redundant software backup from the
points of view of the master and reserve CPUs.

The section of the software subject to high availability requirements is loaded on both the master and
the reserve stations. While the master CPU is processing that part of the program, it is skipped by the
reserve CPU. Having the reserve CPU skip that section of the program ensures that the two programs
do not get out of synchronization (e.g. as a result of alarms, different cycle times, etc.). This means
that the program on the reserve station is ready to take over processing.

Point of information: this type of standby mode is referred to as warm standby as opposed to hot
standby used on the H systems (e.g. S5-155H). In the latter case, both CPUs process the program in
close synchronization.
Master Station Continuously Transfers Current Data to Reserve Station

In order that the application program subject to high-availability requirements does not have to start “from scratch” if the master station fails, the master station continuously transfers current processing data to the reserve station.

Transfer of such data can, however, take a number of cycles depending on the method of communication chosen or the volume of data involved, i.e. the reserve is always a number of cycles behind the master according to the speed of data transfer and the volume of data. If there is a CPU, DP master or DP slave failure on the master station, change-over from the master to the reserve station takes place. The reserve station then takes over the process and itself becomes the master.

Redundant-backup Program Section Areas

The redundant-backup section of the program is given a process image area, an IEC timer area, an IEC counter area, a bit memory address area and a data block (area). Those areas may only be accessed by the redundant-backup software.

When creating your configuration, please remember that it is absolutely essential that all the areas referred to above are contiguous.

When defining the parameters of the startup block “SWR_START” those contiguous areas are scanned.

Processing Unilateral Peripherals

As well as the redundant-backup section of the program, it is, of course, also possible to load a program which controls the unilateral peripherals of the CPU concerned. That part of the program is not affected by the redundant software backup system.

The unilateral peripherals are the peripheral modules that are not addressed by the redundant-backup section of the application program, i.e. are assigned to one CPU only. Physically, such modules can be connected as central modules, local modules with their own DP master system or local modules connected to one of the two DP master systems containing the redundant-backup DP slave interfaces.

Data Exchange Between the Two Stations

The non-duplicated part of the program can exchange its data with the redundant-backup software by means of suitable data blocks. Those data blocks are exchanged by the redundant-backup system and thus made available to the other station in each case.

At the start of OB1 the inputs are read into the PAE. Before the data of the redundant-backup section (PIQ, flags, DBs, timer/counter instance DBs) are sent to the reserve system, the redundant-backup program is processed. If the second station has just started up or if redundant backup has just been restored, it must obtain the data from the station that is already running.

At the end of OB1, the master and reserve units write the redundant-backup PIQ data to the process image for the outputs from where it is passed to the peripherals at the end of the OB cycle.

Alarms can be received by the active station at any time and are processed immediately.

If at that moment or shortly afterwards a change-over takes place, loss of alarm may result.
Change-over from Master to Reserve in Detail

In order that the reserve station does not have to start “from scratch” if the master fails, it is provided with a complete (consistent) PIQ of the program section subject to high availability requirements in case of emergency/change-over.

The diagram below illustrates transfer of relevant processing data to the redundant-backup program on the reserve unit which is on standby to take-over control of the process.

Depending on the type of communication and the volume of data to be transferred the time required for data transfer may be longer than one cycle. In the example above (see diagram) it is assumed that transfer of a complete process image requires two cycles.

This means that in our example, every second PIQ is transferred from the master to the reserve unit.

During normal operation, all redundant-backup DP slave interfaces are assigned to the master station and output the data transferred by the DP master of the master station.

The reserve station - or more precisely the DP master of the reserve station - generally transfers to the signal modules the last complete PIQ transferred to the reserve station. Since, however, all slaves are assigned to the DP master of the master CPU, that data is ignored by the DP slave interfaces.

In the process of an explicit (initiated by command) or fault-related implicit change-over from master to reserve unit, the slave stations are switched over as well or the DP slave interfaces switch themselves over.

Automatic switch-over of the DP slave stations takes place if, for example, a fault is detected on the DP master or the DP bus of the DP master station.

During such a DP slave switch-over, the PIQ data last output is frozen on the DP slaves (see diagram above).

If the DP slave stations have switched themselves over to the DP master of the former reserve station and if that station has not (fully) completed actual change-over from master to reserve, the last PIQ completely transferred to the reserve station is output to the signal modules. Station-specific change-over from master to reserve can take a number of cycles depending on the nature of the fault.

On completion of change-over from master to reserve, the PIQ determined by the new master is output (see diagram above).
Given optimum communication conditions, small volumes of data and faults such as "CPU in STOP Mode" (on an S7-400), change-over can be completed in a single cycle.

In the above example, we consciously chose to illustrate a change-over involving a time loss of 5 cycles.

In the case of a manually initiated change-over, the change-over is optimized. This means, for example, that it is not initiated until immediately after transfer of a complete PIQ.

Restoring Redundant Software Backup After Repairing Faults
To restore redundant software backup after failure of a CPU, for example, the complete configuration and the complete program are loaded onto the replacement CPU (via PU or memory card). That CPU is then started.
2.2 Structure of Status Word for Redundant Software Backup

The diagram below shows the bit assignment of the status word. It is located in DBW 8 of the instance DB for FB 101 ‘SWR_ZYK’.

Status Word for Redundant Software Backup

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Data word</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1: Station is master</td>
</tr>
<tr>
<td>1</td>
<td>1: Station is reserve</td>
</tr>
<tr>
<td>2</td>
<td>1: ID A, station is subunit A</td>
</tr>
<tr>
<td>3</td>
<td>1: ID B, station is subunit B</td>
</tr>
<tr>
<td>4</td>
<td>0: Redundant backup is activated</td>
</tr>
<tr>
<td>5</td>
<td>1: Redundant backup is de-activated</td>
</tr>
<tr>
<td>6</td>
<td>0: Redundant-backup link present</td>
</tr>
<tr>
<td>7</td>
<td>1: Redundant-backup link has failed</td>
</tr>
<tr>
<td>0</td>
<td>1: Startup phase</td>
</tr>
<tr>
<td>1</td>
<td>1: Master-reserve change-over in progress</td>
</tr>
<tr>
<td>2</td>
<td>1: Communication peer still busy with change-over</td>
</tr>
<tr>
<td>3</td>
<td>1: Communication not possible with any DP slaves</td>
</tr>
<tr>
<td>4</td>
<td>1: Communication not possible with some DP slaves</td>
</tr>
<tr>
<td>5</td>
<td>1: Communication possible with all DP slaves</td>
</tr>
</tbody>
</table>

= Bit is not relevant
2.3 Structure of Control Word for Redundant Software Backup

The diagram below shows the bit assignment of the control word. It is located in DBW 10 of the instance DB for FB 101 'SWR_ZYK'.

Control Word for Redundant Software Backup

![Diagram of control word bit assignment]

Note:
If change-over from master to reserve has been disabled at user level (Bit 11.0 of control word set) then the reserve unit writes zeros to the PIQ of the redundant-backup DP slave interface IM 153. That condition remains unchanged until you re-active redundant backup (set Bit 11.1 of the control word).
2.4 Rules for the Use of Redundant Software Backup

The following sections provide a summary of all the rules to be followed when configuring and programming a system with functional redundant software backup.

Hardware Configuration Rules

- ET 200M distributed I/O devices on which there is a redundant-backup DP slave interface (e.g. IM 153-3) must be configured identically on both stations. In order that consistency is maintained, you should always copy the complete DP master system of the first station to the DP master system of the second station (even where there are only minor changes). To do so you should use the menu command Edit > Insert Redundant Copy. Using the menu command Edit > Insert Redundant Copy ensures that the peripheral addresses of the DP slaves are identical on both stations.

- When designing the hardware layout, remember that only contiguous areas (e.g. outputs 0 to 20, bit memory address areas from 50 to 100, DP slave stations from 1 to 6, etc.) can be used for redundant software backup.

- The redundant-backup software supports one PROFIBUS-DP master system. If you require more than one DP master system, you must use multiple redundant-backup systems (i.e. multiple redundant-backup subroutines).

- Permissible baud rates for the PROFIBUS-DP: The redundant-backup software supports only baud rates from 187.5 KBaud to 12 MBaud for the redundant-backup DP slave interface.

Application Program Rules

- Structuring the application program

If your application program is only partly duplicated on the two stations, then you should structure it in such a way that the section of the program for the part of the installation with redundant backup is separate from the program for the part of the installation without redundant backup. We recommend that you write the programs for the different sections of the installation in different organization blocks, e.g. OB 1 and OB 35.

- Redundant-backup application program

The redundant-backup application program is enclosed by two FB 101 ‘SWR_ZYK’ calls. The first FB 101 ‘SWR_ZYK’ call cites the parameter CALL_POSITION=TRUE and the second the parameter CALL_POSITION=FALSE.

- Communication

If you are using an S7 connection for the redundant-backup link and also wish to use that connection for other communication tasks, then the job number R_ID must be greater than 2 (job numbers R_ID= 1 and R_ID=2 are used by the redundant-backup software).

- If you are using FB 103 ‘SWR_SFCOM’ for communication, the redundant-backup software uses the communication blocks SFC 65 ‘X_SEND’ and SFC 66 ‘X_RCV’ with the job numbers R_ID > 8000 0000H.

- If you are using FB 104 ‘SWR_AG_COM’ for communication, the redundant-backup software uses the communication blocks FC 5 ‘AG_SEND’ and FC 6 ‘AG_RCV’ with the job numbers R_ID > 8000 0000H.

- If you are using FB 105 ‘SWR_SFBCOM’ (BSEND, BRCV) for communication, the connection configuration should always specify “Send operating status messages ‘Yes’” so that loss of the connection can be detected as quickly as possible.

- Use of timers and counters

As a general rule, S7 timers and counters can not be used in the redundant-backup section of the program as they can not be updated. You should use the IEC timers and counters instead. Nevertheless, if you are using very short timed periods (shorter than the timer OB cycle or the transmission time between master and reserve), there is no point in updating the timers. In such
cases you can also use S7 timers. If longer timed periods are required or if counters are used, you must make sure that the input signal edge for starting the timer/counter is reliably detected in the event of change-over from master to reserve. This can be done by having pulses (1-0 or 0-1) that are longer than the change-over time. If this is not the case, it is essential that signal edge analysis is invoked (on the reserve as well). In that case, the IEC timers/counters concerned must not be updated. S7 timers and counters can be used in this instance, however.

Handling the Redundant-backup Software Blocks

- In order that the multi-instance DB of the redundant-backup software can be correctly created, all system functions (SFCs/SFBs) used by the redundant-backup software must be located in the S7 project.
- If configuration changes are made to the startup block ‘SWR_START’ the following blocks have to be deleted so that new parameters can be adopted and no malfunctions occur:

<table>
<thead>
<tr>
<th>Block Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB_WORK_NO</td>
<td>(Working DB for redundant software backup)</td>
</tr>
<tr>
<td>DB_SEND_NO</td>
<td>(Send DB for redundant software backup)</td>
</tr>
<tr>
<td>DB_RCV_NO</td>
<td>(Receive DB for redundant software backup)</td>
</tr>
<tr>
<td>DB_A_B_NO</td>
<td>(DB for exchanging data between non-duplicated program section on Station A and the redundant-backup software)</td>
</tr>
<tr>
<td>DB_B_A_NO</td>
<td>(DB for exchanging data between non-duplicated program section on Station B and the redundant-backup software)</td>
</tr>
</tbody>
</table>

OB 86 (Module Rack Failure)

No variables must be inserted in the first 20 bytes of the local variables of OB 86 as they are used and modified by the redundant-backup software.

PIQ in the Redundant-Backup Software

If output parameters are defined in FC 100 ‘SWR_START’ that are not in the PIQ, this will cause a peripheral access error.

Master-Reserve Change-over

During change-over from master to reserve, there are temporarily two masters or two reserves present on the system.

Switching Off a DP Slave

If no other action is taken, switching off a DP slave brings about a change-over from master to reserve. The method of preventing change-over is described in the example program below.

Assumption: I 1.0 is the switch used to prevent change-over. This can also take the form of operator input or the like.
Example of OB86 for switching off slaves without master-reserve change-over:

```
L #OB86_EV_CLASS
L B#16#39
==I // Incoming event
SPBN M001
UE 1.0 // Special input (on active
SPBN M001 // slave==1)--> Do not change over)
AUF DB 3 // DB3 is the receiving DB (DB_EMPF)
L DBW 4 // Reduce existing partner slave
DEC 1 // in advance in order to
T DBW 4 // prevent change-over
M001: NOP 0
CALL "SWR_Diag" // Call for FC 102 'SWR_Diag'
DB_WORK :=1 // Work DB for SWR
OB86_EV_CLASS :=#OB86_EV_CLASS
OB86_FLT_ID :=#OB86_FLT_ID
RETURN_VAL :=MW14 // Block return value
```
3 Redundant Software Backup Blocks

3.1 The Library of Blocks for Redundant Software Backup

When the optional software package is installed, the library SWR_LIB is created in STEP 7. You can access that library in SIMATIC Manager using the menu command **File > Open > Libraries**

The library SWR_LIB contains five block packages. Two are for S7-300 and three for S7-400. You use a specific package according to the type of connection and network via which the two stations are linked.

Block Packages for S7-300

<table>
<thead>
<tr>
<th>Select this package</th>
<th>For this network</th>
<th>And this connection type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSEND_300</td>
<td>MPI</td>
<td>Permanently configured connection</td>
<td>Network connected to MPI interface of CPU</td>
</tr>
<tr>
<td>AG_SEND_300</td>
<td>PROFIBUS</td>
<td>FDL connection</td>
<td>Network connected via CP 342-5</td>
</tr>
<tr>
<td></td>
<td>Industrial Ethernet</td>
<td>ISO connection</td>
<td>Network connected via CP 345-1</td>
</tr>
</tbody>
</table>

Block Packages for S7-400

<table>
<thead>
<tr>
<th>Select this package</th>
<th>For this network</th>
<th>And this connection type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSEND_400</td>
<td>MPI</td>
<td>Permanently configured connection</td>
<td>Network connected to MPI interface of CPU</td>
</tr>
<tr>
<td>AG_SEND_400</td>
<td>PROFIBUS</td>
<td>FDL connection</td>
<td>Network connected via CP 443-5</td>
</tr>
<tr>
<td></td>
<td>Industrial Ethernet</td>
<td>ISO connection</td>
<td>Network connected via CP 443-1</td>
</tr>
<tr>
<td>BSEND_400</td>
<td>MPI</td>
<td>S7 connection</td>
<td>Network connected to MPI interface of CPU</td>
</tr>
<tr>
<td></td>
<td>PROFIBUS</td>
<td></td>
<td>Network connected via CP 443-5</td>
</tr>
<tr>
<td></td>
<td>Industrial Ethernet</td>
<td></td>
<td>Network connected via CP 443-1</td>
</tr>
</tbody>
</table>

See also

Contents of the Block Packages
3.2 Contents of the Block Packages

In each block package there are four blocks that are designed to work in combination with one another. Under no circumstances should you combine blocks from different block packages as this could result in station malfunctions.

Contents of Block Packages XSEND_300 and XSEND_400

<table>
<thead>
<tr>
<th>Block</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC 100 ‘SWR_START’</td>
<td>This block must be invoked by the startup program (OB 100).</td>
</tr>
<tr>
<td>FB 101 ‘SWR_ZYK’</td>
<td>This block must be invoked by the cyclic or timer-controlled program. It must always be invoked before and after processing of the redundant-backup application program.</td>
</tr>
<tr>
<td>FC 102 ‘SWR_DIAG’</td>
<td>This block must be invoked by the diagnostic OB (OB 86).</td>
</tr>
<tr>
<td>FB 103 ‘SWR_SFCCOM’</td>
<td>This block supports processing of data transfer and is invoked invisibly by FB 101 ‘SWR_ZYK’. You must load it onto the two CPUs only.</td>
</tr>
</tbody>
</table>

Note: FB 104 ‘SWR_AG_COM’ invisibly invokes the blocks FC 5 ‘AG_SEND’ and FC 6 ‘AG_RCV’. Those blocks are components of NCM S7 and must be loaded onto both CPUs.

Contents of Block Packages AGSEND_300 and AGSEND_400

<table>
<thead>
<tr>
<th>Block</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC 100 ‘SWR_START’</td>
<td>This block must be invoked by the startup program (OB 100).</td>
</tr>
<tr>
<td>FB 101 ‘SWR_ZYK’</td>
<td>This block must be invoked by the cyclic or timer-controlled program. It must always be invoked before and after processing of the redundant-backup application program.</td>
</tr>
<tr>
<td>FC 102 ‘SWR_DIAG’</td>
<td>This block must be invoked by the diagnostic OB (OB 86).</td>
</tr>
<tr>
<td>FB 104 ‘SWR_AG_COM’</td>
<td>This block supports processing of data transfer and is invoked invisibly by FB 101 ‘SWR_ZYK’. You must load it onto the two CPUs only.</td>
</tr>
</tbody>
</table>

Contents of Block Package BSEND_400

<table>
<thead>
<tr>
<th>Block</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC 100 ‘SWR_START’</td>
<td>This block must be invoked by the startup program (OB 100).</td>
</tr>
<tr>
<td>FB 101 ‘SWR_ZYK’</td>
<td>This block must be invoked by the cyclic or timer-controlled program. It must always be invoked before and after processing of the redundant-backup application program.</td>
</tr>
<tr>
<td>FC 102 ‘SWR_DIAG’</td>
<td>This block must be invoked by the diagnostic OB (OB 86).</td>
</tr>
<tr>
<td>FB 105 ‘SWR_SFBCOM’</td>
<td>This block supports processing of data transfer and is invoked invisibly by FB 101 ‘SWR_ZYK’. You must load it onto the two CPUs only.</td>
</tr>
</tbody>
</table>
3.3 Overview of Blocks for Redundant Software Backup

The table below lists all the blocks used for redundant software backup.

<table>
<thead>
<tr>
<th>Block</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC 100 ‘SWR_START’</td>
<td>The startup block provides the parameters and prepares them for subsequent processing.</td>
</tr>
<tr>
<td>FB 101 ‘SWR_ZYK’</td>
<td>The cyclic block transfers data areas from the master to the reserve station and co-ordinates communication and switch-over from master to reserve.</td>
</tr>
<tr>
<td>FC 102 ‘SWR_DIAG’</td>
<td>The diagnostic block manages the diagnostic data from the slaves and prepares it for FB 101 ‘SWR_ZYK’ as well as executing the change-over.</td>
</tr>
<tr>
<td>FB 103 ‘SWR_SFCCOM’</td>
<td>CPU communication using SFC 65 ‘X_SEND’ and SFC 66 ‘X_RCV’ relates to MPI connections only.</td>
</tr>
<tr>
<td>FB 104 ‘SWR_AG_COM’</td>
<td>CPU communication using FC 5 ‘AG_SEND’, FC 6 ‘AG_RCV’ relates to PROFIBUS and Industrial Ethernet connections.</td>
</tr>
<tr>
<td>FB 105 ‘SWR_SFBCOM’</td>
<td>CPU communication using SFB 12 ‘BSEND’ and SFB 13 ‘BRCV’ relates to MPI, PROFIBUS, Industrial Ethernet and point-to-point connections; these blocks can not be used in S7-300.</td>
</tr>
<tr>
<td>DB_WORK_NO</td>
<td>Working data block for redundant software backup</td>
</tr>
<tr>
<td>DB_SEND_NO</td>
<td>Data memory for redundant-backup software: Send DB contains DBs, MBs, PAAs, Dis.</td>
</tr>
<tr>
<td>DB_RCV_NO</td>
<td>Receive DB for redundant-backup software components</td>
</tr>
<tr>
<td>DB_A_B_NO</td>
<td>Send-Receive DB for non-duplicated data transferred from Station A to Station B</td>
</tr>
<tr>
<td>DB_B_A_NO</td>
<td>Send-Receive DB for non-duplicated data transferred from Station B to Station A</td>
</tr>
<tr>
<td>DB_COM_NO</td>
<td>Instance DB for the communication blocks</td>
</tr>
<tr>
<td>FC 5 ‘AG_SEND’</td>
<td>This block is required if FDL connections are used for the redundant-backup link</td>
</tr>
<tr>
<td>FC 6 ‘AG_RCV’</td>
<td>This block is required if FDL connections are used for the redundant-backup link</td>
</tr>
</tbody>
</table>

Important Note!

The data blocks detailed above are generated once only at startup by FC 100 ‘SWR_START’ with the required length (exception: DB_COM_NO). If you change the parameters of FC 100 ‘SWR_START’, then changes to the data blocks are generally required as well. You should therefore delete all old data blocks so that new data blocks of the required length can be generated at startup.
3.4 FC 100 ‘SWR_START’

Function
FC 100 ‘SWR_START’ is used to initialize the two stations. Essentially, this block specifies the following:

- the peripherals area of the outputs, the bit memory address area, the data block area, data blocks and the area for the instance DB for the IEC counters/timers that are used in your redundant-backup application program; each area must be a contiguous range;
- details about communication and the local peripherals;
- three data blocks that the redundant software backup blocks require for storing internal data.

FC 100 ‘SWR_START’ must be invoked by the startup block OB 100.

Note on Defining Parameters for Unused Areas
If you do not use specific areas, specify the value 0 for the relevant parameter. Example: you are not using any IEC timers/counters - then specify IEC_NO = 0 and IEC_LEN = 0. If you have no outputs in the PIQ area, assign the parameter PAA_FIRST a greater value than PAA_LAST.

If you are not using the block DB_A_B_NO and/or DB_B_A_NO, then specify any DB number and define the length as 0. Example: you are not using DB_A_B_NO - in that case specify DB_A_B_NO = DB 255 and DB_A_B_NO_LEN = W#16#0 (the data type of data blocks DB_A_B_NO and DB_B_A_NO is Block-DB which means that values greater than DB 0 must be specified, e.g. DB 255).

The data blocks DB_SEND_NO and DB_RCV_NO must have the same DB numbers on both stations as must the data blocks DB_A_B_NO and DB_B_A_NO.

Interruptibility
FC 100 ‘SWR_START’ is interruptible.

Description of Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Decl.</th>
<th>Data Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG_KENNUNG</td>
<td>IN</td>
<td>CHAR</td>
<td>Station ID</td>
<td>‘A’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– ‘A’ for station A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– ‘B’ for station B.</td>
<td></td>
</tr>
<tr>
<td>DB_WORK_NO</td>
<td>IN</td>
<td>Block-DB</td>
<td>Working DB for redundant software backup. Contains internal data only.</td>
<td>DB1</td>
</tr>
<tr>
<td>DB_SEND_NO</td>
<td>IN</td>
<td>Block-DB</td>
<td>DB in which data to be sent to communication peer is collected. Contains internal data only.</td>
<td>DB2</td>
</tr>
<tr>
<td>DB_RCV_NO</td>
<td>IN</td>
<td>Block-DB</td>
<td>DB in which the CPU collects the data received from communication peer. Contains internal data only.</td>
<td>DB3</td>
</tr>
<tr>
<td>MPI_ADR</td>
<td>IN</td>
<td>INT</td>
<td>MPI address of communication peer</td>
<td>4</td>
</tr>
<tr>
<td>LADDR</td>
<td>IN</td>
<td>INT</td>
<td>Logical base address of communication processor (specified in hardware configuration).</td>
<td>260</td>
</tr>
<tr>
<td>VERB_ID</td>
<td>IN</td>
<td>INT</td>
<td>Connection ID</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of connection for redundant-backup link (specified in connection configuration).</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Type</td>
<td>Description</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>DP_MASTER_SYS_ID</td>
<td>IN</td>
<td>DP master system ID ID of DP master system to which the ET 200M slaves are connected (specified in hardware configuration).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DB_COM_NO</td>
<td>IN</td>
<td>Instance DB of FB 101 'SWR_ZYK'.</td>
<td>DB5</td>
<td></td>
</tr>
</tbody>
</table>
| DP-KOMMUN | IN | Identification number of DP master
- 1 for DP master is a CPU with integral DP interface
- 2 for DP master is a CP. | 1 |
| ADR_MODUS | INT | Increment size for the matrix in which the CPU allocates the I/O addresses (address matrix is CPU-dependent).
- 1, if base addresses 0, 1, 2, 3 ...
- 4, if base addresses 0, 4, 8, 12 ... | 1 |
| PAA_FIRST | IN | Number of first output byte used by an ET 200M with redundant-backup IM 153. | 0 | |
| PAA_LAST | IN | Number of last output byte used by an ET 200M with redundant-backup IM 153. Output bytes in the range PAA_FIRST to PAA_LAST must form a contiguous range and may only be used by the ET 200Ms with redundant-backup IM 153s. A maximum of 32 bytes of outputs may be configured for each redundant-backup DP slave used. | 4 |
| MB_NO | IN | Number of first memory byte used by redundant-backup application program. | 20 |
| MB_LEN | IN | Total number of memory bytes used by redundant-backup application program. Memory bytes must be allocated contiguously. | 30 |
| IEC_NO | IN | Number of first instance DB for IEC counters/timers used by redundant-backup application program. | 111 |
| IEC_LEN | IN | Total number of instance DBs for IEC timers/counters used by redundant-backup application program. Instance DBs must be allocated contiguously. | 7 |
| DB_NO | IN | Number of first data block used by redundant-backup application program. | 8 |
| DB_NO_LEN | IN | Total number of data blocks used by redundant-backup application program. Data blocks must be allocated contiguously. | 2 |
| SLAVE_NO | IN | Lowest PROFIBUS address used for | 3 |
| **SLAVE_LEN** | **IN** | **INT** | Total number of ET 200M DP slaves used. PROFIBUS addresses must be allocated contiguously. | 1 |
| **SLAVE_DISTANCE** | **IN** | **INT** | Identifier for IM 153-3 PROFIBUS address setting
− 1, if both interfaces have same PROFIBUS address
− 2, if interfaces have PROFIBUS addresses n and n+1 | 1 |
| **DB_A_B_NO** | **IN** | **Block-DB** | Send DB for non-duplicated data sent from station A to station B. | DB11 |
| **DB_A_B_NO_LEN** | **IN** | **WORD** | Number of data bytes used in DB_A_B_NO. | W#16#64 |
| **DB_B_A_NO** | **IN** | **Block-DB** | Send DB for non-duplicated data sent from station B to station A. | DB12 |
| **DB_B_A_NO_LEN** | **IN** | **WORD** | Number of data bytes used in DB_B_A_NO. | W#16#64 |
| **RETURN_VAL** | **OUT** | **WORD** | Block return value (for explanation see below). | MW2 |
| **EXT_INFO** | **OUT** | **WORD** | Return value of a lower-level block (for explanation see below). | MW4 |
Block-Specific Values for RETURN_VAL and EXT_INFO

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>W#16#0</td>
<td>No error.</td>
</tr>
<tr>
<td>W#16#8001</td>
<td>Illegal value for parameter Teil-AG-Kennung.</td>
</tr>
<tr>
<td>W#16#8002</td>
<td>DB_WORK_NO could not be generated. Cause identifiable from return value of SFC 22. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8003</td>
<td>DB_SEND_NO could not be generated. Cause identifiable from return value of SFC 22. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8004</td>
<td>DB_RCV_NO could not be generated. Cause identifiable from return value of SFC 22. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8005</td>
<td>DB_A_B_NO could not be generated. Cause identifiable from return value of SFC 22. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8006</td>
<td>DB_B_A_NO could not be generated. Cause identifiable from return value of SFC 22. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8007</td>
<td>Illegal value for parameter DP_MASTER_SYS_ID or SLAVE_NO or SLAVE_LEN or SLAVE_DISTANCE. Specified value does not match hardware configuration.</td>
</tr>
<tr>
<td>W#16#8008</td>
<td>Illegal value for parameter DP-KOMMUN if EXT_INFO=W#16#8888 or diagnosis could not be performed. Cause identifiable from return value of SFC 51. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8009</td>
<td>Changeover lock for slaves could not be disabled. Cause identifiable from return value of SFC 58. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#800A</td>
<td>Status of DP slave interface could not be determined. Cause identifiable from return value of SFC 59. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#800B</td>
<td>Error determining the PAA area used. Cause identifiable from return value of SFC 50. Return values stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#800C</td>
<td>Illegal value for parameter ADR_MODUS.</td>
</tr>
<tr>
<td>W#16#800D</td>
<td>Illegal value for parameter SLAVE_DISTANCE.</td>
</tr>
<tr>
<td>W#16#800E</td>
<td>DB_WORK_NO can not be read. Reload blocks.</td>
</tr>
<tr>
<td>W#16#800F</td>
<td>Illegal value for parameter DP_KOMMUN (no interfaces specified).</td>
</tr>
<tr>
<td>W#16#80F1</td>
<td>Error determining the addresses of the PAA. Cause identifiable from return value of SFC 50. Return value stored in EXT_INFO. Details specified for PAA_FIRST and PAA_LAST do not match hardware configuration.</td>
</tr>
<tr>
<td>W#16#8027</td>
<td>Internal error.</td>
</tr>
</tbody>
</table>
3.5 FB 101 ‘SWR_ZYK’

Function
FB 101 ‘SWR_ZYK’ must be invoked before and after the redundant-backup application program.
FB 101 ‘SWR_ZYK’ is used to initiate transfer of data from the master to the reserve unit.
When invoked, FB 101 automatically processes data transfer from the master to the reserve unit.
FB 101 invisibly invokes the functions/function blocks required for data transfer.

Interruptibility
FB 101 ‘SWR_ZYK’ is interruptible.

Instance DB
When FB 101 ‘SWR_ZYK’ is invoked, an instance DB must be specified. The block number of the instance DB should have been specified when defining the parameters of FC 100 ‘SWR-START’ in the parameter DB_COM_NO.

Description of Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Decl.</th>
<th>Data Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB_WORK_NO</td>
<td>IN</td>
<td>Block-DB</td>
<td>Working DB; details must be identical to those specified in parameter DB_WORK_NO of FC 100 ‘SWR_START’.</td>
<td>DB1</td>
</tr>
<tr>
<td>CALL_POSITION</td>
<td>IN</td>
<td>BOOL</td>
<td>This parameter indicates at what point in the application program FB 101 ‘SWR_ZYK’ is invoked. – TRUE if it is invoked before the redundant-backup application program – FALSE if it is invoked after the redundant-backup application program</td>
<td>TRUE</td>
</tr>
<tr>
<td>RETURN_VAL</td>
<td>OUT</td>
<td>WORD</td>
<td>Block return value (for explanation see below).</td>
<td>MW6</td>
</tr>
<tr>
<td>EXT_INFO</td>
<td>OUT</td>
<td>WORD</td>
<td>Return value of a lower-level block (for explanation see below).</td>
<td>MW8</td>
</tr>
</tbody>
</table>

Block-specific Values for RETURN_VAL and EXT_INFO

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>W#16#0</td>
<td>No error</td>
</tr>
<tr>
<td>W#16#8008</td>
<td>Illegal value for parameter DP-KOMMUN if EXT_INFO=W#16#8888 or diagnosis could not be performed. Cause identifiable from return value of SFC 51.</td>
</tr>
<tr>
<td>W#16#800A</td>
<td>Status of DP slave interface could not be determined. Cause identifiable from return value of SFC 59. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#800F</td>
<td>Illegal value for parameter DP_KOMMUN (no interfaces specified).</td>
</tr>
<tr>
<td>W#16#8010</td>
<td>Changeover of DP slave could not be performed. Cause identifiable from return value of SFC 58. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>W#16#8011</td>
<td>Connection can not be established. Teil-AG-Kennung invalid.</td>
</tr>
<tr>
<td>W#16#8012</td>
<td>No job present in communication FB (FB 103 ‘SWR_SFBCOM’), (instance DB defective or internal error).</td>
</tr>
<tr>
<td>W#16#8013</td>
<td>Error encountered when sending (FB 103 ‘SWR_SFBCOM’, FB 104 ‘SWR_AG_COM’, FB 105 ‘SWR_SFCCOM’). Cause identifiable from return value of SFC 65 ‘X_SEND’/FC 5 ‘AG_SEND’/SFB 12 ‘BSEND’. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8014</td>
<td>Error encountered when receiving (FB 103 ‘SWR_SFBCOM’, FB 104 ‘SWR_AG_COM’, FB 105 ‘SWR_SFCCOM’). Cause identifiable from return value of SFC 66 ‘X_RCV’/FC 5 ‘AG_RCV’/SFB 13 ‘BRCV’. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8015</td>
<td>Redundant-backup link failure. Check hardware.</td>
</tr>
<tr>
<td>W#16#8016</td>
<td>Communication peer status can not be read (FB 103 ‘SWR_SFBCOM’). Cause identifiable from return value of SFB 23 ‘USTATUS’. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8017</td>
<td>All DP slaves have failed.</td>
</tr>
<tr>
<td>W#16#8018</td>
<td>Not possible to write to Send DB (FB 104 ‘SWR_AG_COM’, FB 105 SWR_SFCCOM’). Cause identifiable from return value of SFC 20. Return value stored in EXT_INFO.</td>
</tr>
<tr>
<td>W#16#8019</td>
<td>Not possible to read Receive DB (FB 104 ‘SWR_AG_COM’, FB 105 SWR_SFCCOM’).</td>
</tr>
<tr>
<td>W#16#8020</td>
<td>Internal error.</td>
</tr>
</tbody>
</table>
3.6 FC 102 ‘SWR_DIAG’

Function
FC 102 must be invoked by the diagnostic OB (OB 86). You must not alter its block number.
FC 102 ‘SWR_DIAG’ makes sure that following failure of a DP slave, automatic changeover from master to reserve takes place.

Interruptibility
FC 102 ‘SWR_DIAG’ is interruptible.

Description of Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Decl.</th>
<th>Data Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB_WORK</td>
<td>IN</td>
<td>INT</td>
<td>Number of working DB for redundant software backup. Must be identical with that specified for parameter DB_WORK_NO of FC 100 ‘SWR_START’. DB contains internal data only.</td>
<td></td>
</tr>
<tr>
<td>OB 86_EV_CLASS</td>
<td>IN</td>
<td>INT</td>
<td>Startup information from diagnostic OB, OB 86. Copy the variable from the declaration table of OB 86.</td>
<td>#OB86_EV_CLASS</td>
</tr>
<tr>
<td>OB 86_FLT_ID</td>
<td>IN</td>
<td>INT</td>
<td>Startup information from diagnostic OB, OB 86. Copy the variable from the declaration table of OB 86.</td>
<td>#OB86_FLT_ID</td>
</tr>
<tr>
<td>RETURN_VAL</td>
<td>OUT</td>
<td>WORD</td>
<td>Block return value (for explanation see below).</td>
<td>MW14</td>
</tr>
</tbody>
</table>

Block-specific Values for RETURN_VAL and EXT_INFO

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>W#16#00</td>
<td>No error.</td>
</tr>
<tr>
<td>W#16#80F2</td>
<td>Illegal value for one of the parameters of FC 102 ‘SWR_DIAG’.</td>
</tr>
<tr>
<td>W#16#80F3</td>
<td>More DP slaves present than specified in FC 100 ‘SWR_START’. Check parameter SLAVE_NO or SLAVE_LEN.</td>
</tr>
</tbody>
</table>
3.7 FB 103 'SWR_SFCCOM', FB 104 'SW_AG_COM' and FB 105 'SWR_SFBCOM'

The block packages in the library SWR-LIB each contain one of the above function blocks. The numbers of those blocks (FB 103/FB 104/FB 105) must not be changed.

Those function blocks are invoked invisibly by FB 101 'SWR_ZYK' and organize data transfer from the master to the reserve unit.

Make sure that the necessary block is loaded on both CPUs of the redundant-backup system.

Note:

If you use FB 104 'SWR_AG_COM', the blocks FC 5 'AG_SEND' and FC 6 'AG_RCV' must also be present in your project. The block numbers for FC 5 'AG_SEND' and FC 6 'AG_RCV' must not be changed.
3.8 Data Blocks DB_WORK_NO, DB_SEND_NO and DB_RCV_NO

You specify data blocks DB_WORK_NO, DB_SEND_NO and DB_RCV_NO when defining the parameters of FC 100 ‘SWR_START’.

Function
These data blocks are used exclusively for storing internal data.

Important Note!
The data blocks detailed above are generated once only at startup by FC 100 ‘SWR_START’ with the required length. If you alter the parameters of FC 100 ‘SWR_START’, alterations to the data blocks are normally required as well. For that reason, you should delete all the old data blocks so that new data blocks of the required length can be generated at startup.

If you change the parameter settings of FC 100 ‘SWR_START’ and do not delete the data blocks, malfunctions may occur.
3.9 Data Blocks DB_A_B and DB_B_A for Exchange of Non-Duplicated Data

You specify data blocks DB_A_B_NO and DB_B_A_NO when defining the parameters of FC 101 'SWR_START'. The length of the DB must be specified in parameters DB_A_B_NO_LEN and DB_B_A_NO_LEN. If a DB is not used, specify the length "0".

Function

In order that the two stations can also exchange information that is not duplicated, the data blocks DB_A_B_NO and DB_B_A_NO are provided. Non-duplicated data might be the status of an input module located on the central module rack of station A only (unilateral peripheral), for example.

These two data blocks can be used to exchange any information between station A and station B. This will normally involve non-duplicated data that is processed by one station only and then transferred to the other station.

Such exchange of data ensures that both stations have access to the same data. In that way, the redundant-backup section of the application program can exchange data with the non-duplicated (standard) program.

Example:

On the central module rack of station A there is a unilateral peripheral device which has an input word EW 10 and on the central module rack of station B there is a unilateral peripheral device which has an input word EW 30. The status of those input words is to be transferred to the other station in each case where it is to be displayed by the redundant-backup program by means of output words AW 20 and AW 40.

Procedure:

1. Specify the data blocks when defining the parameters for FC 100 'SWR_START', e.g. DB_A_B = DB 10 and DB_B_A = DB 11.
2. Program the necessary program sequences in the application programs on station A and station B.

```
Station A
(Master)

Non-duplicated application program

L EW 10
T DB10.DBW 0

Redundant-backup application program

L DB10.DBW 0
T AW 20
L DB11.DBW 0
T AW 40

Station B
(Reserve)

Non-duplicated application program

L EW 30
T DB11.DBW 0

Redundant-backup application program

L DB10.DBW 0
T AW 20
L DB11.DBW 0
T AW 40
```

DB 10 is automatically copied to Station B

DB 11 is automatically copied to Station A

Station A

Station B

(Reserve)
3.10 Data Block DB_COM_NO

You specify data block DB_COM_NO when defining the parameters of FC 100 ‘SWR_START’. It is the instance DB of FB 101 ‘SWR_ZYK’.

Function
In addition to the internal data for communication, DB_COM_NO also contains the status and control words. DB_COM_NO is the instance DB of FB 101 ‘SWR_ZYK’.

Important Note!
DB_COM_NO is the instance DB of FB 101 ‘SWR_ZYK’ and is generated by STEP 7.

In order that the block can be generated, all system functions used by redundant software backup (SFB, SFC) must be present in your project. A list of the system functions used is given in Technical Data of the Blocks.

Structure of the Data Block

<table>
<thead>
<tr>
<th>DBW</th>
<th>Meaning</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...6</td>
<td>Internal data</td>
<td>Input and output parameters of FB 101 ‘SWR_ZYK’</td>
</tr>
<tr>
<td>8</td>
<td>Status word</td>
<td>Status Word for Redundant Software Backup</td>
</tr>
<tr>
<td>10</td>
<td>Control word</td>
<td>Control Word for Redundant Software Backup</td>
</tr>
<tr>
<td>12 upwards</td>
<td>Internal data</td>
<td>Irrelevant</td>
</tr>
</tbody>
</table>
3.11 Examples Using Minimum Configuration for Quick Introduction

In order to provide a quick introduction, we have provided two example programs on the CD that are copied to the STEP 7 project directory by the installation program.

The two programs concerned are fully executable examples - one for S7-300 and one for S7-400. The CPU selected in the S7-300 example is the CPU 315-2DP and in the S7-400 example it is the CPU 414-2DP. Both examples use the MPI interfaces of the CPUs for the redundant-backup link.

It goes without saying that you can modify the examples to suit your own requirements and use other CPUs for example. In such cases, you will need to alter the hardware configuration accordingly.

Hardware Components for S7-300 Example
A minimal configuration was chosen for the S7-300 example. The two stations consist of one DIN rail, one power supply unit and one CPU 315-2DP in each case. The ET 200M local peripheral device consists of a power supply unit, an IM 153-3 DP slave interface and a simulator module (1 byte inputs and 1 byte outputs, address 0).

Hardware Components for S7-400 Example
A minimal configuration was chosen for the S7-400 example. The two stations consist of one module rack, one power supply unit and one CPU 414-2DP in each case. The ET 200M local peripheral device consists of a power supply unit, an IM 153-3 DP slave interface and a simulator module (1 byte inputs and 1 byte outputs, address 0).

Hardware Layout for S7-300 and S7-400 Examples

Proceed as follows:
- Open the example project.
- Transfer the "Hardware Configuration" to Station A and Station B.
- Transfer all blocks from the two block containers to the relevant stations.
- S7-400 only: transfer the connection configuration to the two stations.

Checking Function
Switch the two stations to RUN and check that they are functioning correctly by checking the following for each program with the aid of variables table VAT1:

1. Read the status word from Station A (DB5.DBW8).
 The value 1000 0000 0000 0101 should be displayed. Meaning: station is Subunit A and the master and all DP slaves are accessible.

2. Read the status word from Station B (DB5.DBW8):
 The value 1000 0000 0000 1010 should be displayed. Meaning: station is Subunit B and the reserve and all DP slaves are accessible.
3. Set the bit in the control word for changeover from master to reserve (DB5.DBX10.0) and then recheck the status.
 Bits DBX 9.0 and DBX 9.1 in the status word on both stations should change status. The active interface of the IM 153-3 should also change.
3.12 Technical Data of the Blocks

<table>
<thead>
<tr>
<th>Block</th>
<th>Memory Requirements</th>
<th>System Functions Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC 100 ‘SWR_START’</td>
<td>2.6 kB</td>
<td>SFC 22 ‘CREATE_DB’, SFC 5 ‘GADR_LGC’, SFC 50 ‘RD_LGADR’, SFC 46 ‘STP’, SFC 47 ‘WAIT’</td>
</tr>
<tr>
<td>FB 101 ‘SWR_ZYK’</td>
<td>3.7 kB</td>
<td>SFC 64 ‘TIME_TCK’, SFB 3 ‘TP’</td>
</tr>
<tr>
<td>FC 102 ‘SWR_DIAG’</td>
<td>2 kB</td>
<td>SFC 51 ‘RDSSYST’, SFC 58 ‘WR_REC’, SFC 59 ‘RD_REC’</td>
</tr>
<tr>
<td>FB 103 ‘SWR_SFCCOM’</td>
<td>1.5 kB</td>
<td>SFC 20 ‘BLKMOV’, SFC 65 ‘X_SEND’, SFC 66 ‘X_RCV’</td>
</tr>
<tr>
<td>FB 104 ‘SWR_AG_COM’</td>
<td>1.5 kB</td>
<td>SFC 20 ‘BLKMOV’, FC 5 ‘AG_SEND’, FC 6 ‘AG_RCV’</td>
</tr>
<tr>
<td>FB 105 ‘SWR_SFBCOM’</td>
<td>1.5 kB</td>
<td>SFB 12 ‘BSEND’, SFB 13 ‘BRCV’, SFB 23 ‘USTATUS’</td>
</tr>
</tbody>
</table>
4 References and Supplementary Information

4.1 Features and Characteristics of Redundant Software Backup

The table below summarizes the most important features.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>System availability</td>
<td>The system consists of two CPUs. One CPU – the master-CPU (master station) – processes the application program and also transfers the necessary information for the second CPU – the reserve CPU (reserve station) – to be able to continue running the redundant-backup (section of the) application program in the event of a fault. The reserve station does not process redundant-backup application program on standby but only the local (non-duplicated) application program. If the first CPU fails, running of the application program is taken over by the second CPU (master-reserve principle).</td>
</tr>
<tr>
<td>Time for transferring updated data from master to reserve unit</td>
<td>Dependent on the CPU, the network/communication protocol used, and the size of the application program.</td>
</tr>
<tr>
<td>Master-reserve change-over time</td>
<td>Dependent on the reason for change-over, the time required for data transfer and the number of DP slaves connected.</td>
</tr>
<tr>
<td>Application program</td>
<td>Completely or partially identical application programs possible on both CPUs</td>
</tr>
<tr>
<td>Programming languages</td>
<td>LAD, FBD, STL as well as CFC and SCL</td>
</tr>
<tr>
<td>Use of standard function blocks</td>
<td>All function blocks can be used Exception: blocks that use S7 timers and/or S7 counters; only IEC counters/timers are permissible.</td>
</tr>
<tr>
<td>Use of standard software controllers</td>
<td>No restriction of SIMATIC S7 standard Exception: blocks that use S/ timers and/or S7 counters</td>
</tr>
<tr>
<td>Alarm processing in application program</td>
<td>No restriction of SIMATIC S7 standard Alarms may be lost during master-reserve change-over, however (alarm processing may be suspended)</td>
</tr>
<tr>
<td>Number of ET 200M DP slaves usable</td>
<td>Depends on the CPU used (up to 64 ET 200M DP slaves with CPU 414-2DP)</td>
</tr>
<tr>
<td>Digital/analog peripherals</td>
<td>All digital and analogue modules that can be used on the ET 200M peripheral unit</td>
</tr>
<tr>
<td>Function modules</td>
<td>Use of counter module FM 350 possible on ET 200M</td>
</tr>
<tr>
<td>Max. volume of redundant-backup data transferable</td>
<td>8 kByte for S7-300 64 kByte for S7-400</td>
</tr>
<tr>
<td>Second and third faults</td>
<td>Only initial faults are managed, i.e. if a second or third fault occurs while a fault is being processed it can happen that the redundant-backup program is not processed, for example.</td>
</tr>
</tbody>
</table>
4.2 Change-over from Master to Reserve

Definition:
If the CPUs change their master/reserve status and the DP slave interfaces their active side, this is referred to as master-reserve change-over.

Causes of Master-Reserve Change-over
Change-over from master to reserve can take place for a number of reasons as follows:

- Request for change-over from master to reserve at user level (bit set in control word)
- Failure of the master unit (POWER OFF or STOP)
- Fault on DP master system of master unit
- Failure of a redundant-backup DP slave interface

See also:
How Does a System with Redundant Software Backup Work?
Duration of Master-Reserve Change-over
4.3 Duration of Master-Reserve Change-over

The time it takes to change over from master to reserve is the total, in the worst-case scenario, of the fault detection time, the data transfer time and the time taken to switch over the DP slaves.

Worst-case scenario:

\[
\text{Duration of master-reserve change-over} = \text{Fault detection time} + \text{Data transfer time} + \text{DP slave switch-over time}
\]

See also:

- Duration of Data Transfer from Master to Reserve
- Switch-over Times for ET200M DP Slaves
- Fault Detection Time for Faults on the Redundant-Backup System
4.3.1 Duration of Data Transfer from Master to Reserve

The time required for data transfer from the master to the reserve unit is dependent on a number of factors as follows:

- Communication performance of the CPU used
- Network, connection type used and transmission rate
- Volume of data to be transferred

As a rule, it is not possible for all data to be transferred from one station to another within one cycle. In order that the cycle is not overloaded by data transfer, the data is split up and transferred in small packets over a number of cycles.

The volume of data transferred is made up of the PIQ area, the bit memory address area and the data block area specified in FC 100 ‘SWR_START’, as well as other internal data.

Rule of Thumb for Estimating Volume of Data Transferred

The following rule of thumb has proved reliable for estimating the volume of data transferred:

Data volume = 3 times the number of output bytes used

The tables below show the typical transmission times for the CPU 315-2DP and the CPU 414-2DP:

Transmission Time for a Redundant-Backup System with Two Type CPU 315-2DP CPUs

Since data transmission is organized in 240-byte blocks when using FB 104 ‘SWR_AG_COM’ and in 76-byte blocks with FB 103 ‘SWR_SFCCOM’, a maximum of one block can be transferred per redundant-backup software call. This means that the volume of data to be transferred depends on the call interval of the redundant-backup software.

<table>
<thead>
<tr>
<th>Number of bytes to be transferred</th>
<th>Transmission time for PROFIBUS (AG_SEND) 187.5 kBaud to 1.5 MBaud</th>
<th>Transmission time for Industrial Ethernet (AG_SEND) 10 MBaud</th>
<th>Transmission time for MPI connection (XSEND) 187.5 kBaud</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kByte</td>
<td>60 ms per 240-byte block</td>
<td>48 ms per 240-byte block</td>
<td>152 ms per 76-byte block</td>
</tr>
<tr>
<td>4 kByte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 kByte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 kByte</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note on Table for CPU 315-2DP:
The times quoted apply in the case of networks to which only the two stations of the redundant-backup system are connected. The redundant-backup application program is written in OB 1. The running time of OB 1 is 10 ms maximum.

If more than 2 nodes are connected to the network, the transmission may be longer than that quoted depending on the selected baud rate (for 1.5 MBaud and 10 MBaud the transmission time remains virtually constant).

Transmission Time for a Redundant-Backup System With Two Type CPU 414-2DP CPUs

<table>
<thead>
<tr>
<th>Number of bytes to be transferred</th>
<th>Transmission time for PROFIBUS/Industrial Ethernet, 187.5 kBaud to 12 Mbaud</th>
<th>Transmission time for MPI connection at 187.5 kBaud</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kByte</td>
<td>250 ms</td>
<td>340 ms</td>
</tr>
<tr>
<td>4 kByte</td>
<td>1 s</td>
<td>1.36 s</td>
</tr>
<tr>
<td>16 kByte</td>
<td>4 s</td>
<td>5.44 s</td>
</tr>
<tr>
<td>64 kByte</td>
<td>16 s</td>
<td>21.76 s</td>
</tr>
</tbody>
</table>

Note on table for CPU 414-2DP:
The times quoted apply in the case of networks to which only the two stations of the redundant-backup system are connected and communication is processed using the blocks BSEND/BRCV.
If more than 2 nodes are connected to the network, the transmission may be longer than that quoted depending on the selected baud rate.
Depending on the communication capacity (K bus) of the CPU, the transmission time may be longer (CPU 412) or shorter (CPU 416).
4.3.2 Switch-over Times for ET200M DP Slaves

When change-over from master to reserve unit takes place, the ET 200M DP slaves are automatically switched over from the DP master system of the master to the DP master system of the reserve unit. In the case of the S7-300, up to 4 DP slaves can be switched over per call interval and up to 8 DP slaves in the case of the S7-400. If there are more than 4 or 8 DP slaves, they are switched over in groups over a number of call cycles.

Requirement for Call Interval of OB 1/OB 35

The call interval between two OB 1 calls or two timer-controlled OB calls must always be greater than the switch-over time for 4 or 8 DP slaves. Only if you are using fewer than 4 or 8 DP slaves, may the call interval be smaller (see table for times).

CPU 315-2DP with Integrated DP Master

<table>
<thead>
<tr>
<th>Number of DP Slaves</th>
<th>CPU consisting of S7-300 with integrated DP Master...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 Mbaud</td>
</tr>
<tr>
<td>1</td>
<td>6 ms</td>
</tr>
<tr>
<td>2</td>
<td>12 ms</td>
</tr>
<tr>
<td>4</td>
<td>25 ms</td>
</tr>
<tr>
<td>8</td>
<td>2 x 25 ms</td>
</tr>
<tr>
<td>16</td>
<td>4 x 25 ms</td>
</tr>
<tr>
<td>32</td>
<td>8 x 25 ms</td>
</tr>
<tr>
<td>64</td>
<td>16 x 25 ms</td>
</tr>
</tbody>
</table>

CPUs with Integrated DP Master or CP as DP Master for S7-400 Station

<table>
<thead>
<tr>
<th>Number of DP Slaves</th>
<th>CPU consisting of S7-400 with integrated DP Master</th>
<th>CP as DP Master (CP 443-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 Mbaud</td>
<td>1,5 Mbaud</td>
</tr>
<tr>
<td>1</td>
<td>5 ms</td>
<td>9 ms</td>
</tr>
<tr>
<td>2</td>
<td>10 ms</td>
<td>18 ms</td>
</tr>
<tr>
<td>4</td>
<td>20 ms</td>
<td>36 ms</td>
</tr>
<tr>
<td>8</td>
<td>40 ms</td>
<td>64 ms</td>
</tr>
<tr>
<td>16</td>
<td>2 x 40 ms</td>
<td>2 x 64 ms</td>
</tr>
<tr>
<td>32</td>
<td>4 x 40 ms</td>
<td>4 x 64 ms</td>
</tr>
<tr>
<td>64</td>
<td>8 x 40 ms</td>
<td>8 x 64 ms</td>
</tr>
</tbody>
</table>
4.3.3 Fault Detection Time for Faults on the Redundant-backup System

The tables below show the maximum fault detection times of the system and the system response to various causes of faults.

Faults on Master Unit

<table>
<thead>
<tr>
<th>Cause of Fault</th>
<th>Fault Detection Time</th>
<th>Response</th>
</tr>
</thead>
</table>
| CPU of master unit in STOP Mode or POWER OFF on master unit | Approx. 1 s* | 1. DP interfaces are automatically switched over to new master
2. Automatic master-reserve change-over
3. Status word indicates “Redundant-backup link failure” |
| Failure of DP master on master unit or Failure of complete DP master system of master unit | a few ms | 1. DP interfaces are automatically switched over to new master
2. Automatic master-reserve change-over
3. Status word indicates “No DP slave present” |

* On systems with S7-400 the fault detection time quoted will be reduced from 1 s to 100 ms if the block package BSEND is used and the operating status messages are automatically transferred (must be specified in connection configuration).

Faults on Reserve Unit

<table>
<thead>
<tr>
<th>Cause of Fault</th>
<th>Fault Detection Time</th>
<th>Response</th>
</tr>
</thead>
</table>
| CPU of reserve unit in STOP Mode or POWER OFF on reserve unit | Approx. 1 s | • No response from master unit; master continues to operate as before
• Status word indicates “Redundant-backup link failure” |
| Failure of DP master on reserve unit or Failure of complete DP master system of reserve unit | a few ms | • No response from master unit; master continues to operate as before
• Reserve unit status word indicates “No DP slave present” |
Faults on the Redundant-backup Link

<table>
<thead>
<tr>
<th>Cause of Fault</th>
<th>Fault Detection Time</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundant-backup link failure</td>
<td>Approx. 1 s**</td>
<td>• Both stations become master; DP slaves remain assigned to previous master</td>
</tr>
</tbody>
</table>

** In the case of long redundant-backup software call intervals (> 1 s), the detection time for failure of the redundant-backup system is at least 3 to 4 call cycles.

Faults on the Local Peripherals

<table>
<thead>
<tr>
<th>Cause of Fault</th>
<th>Fault Detection Time</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure of ET 200M DP interface (IM 153-3) connected to master unit</td>
<td>A few ms</td>
<td>1. ET 200M DP interface is switched over to the reserve unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. All other DP slaves are switched over to the reserve unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Automatic master-reserve change-over</td>
</tr>
<tr>
<td>Failure of ET 200M DP interface (IM 153-3) connected to reserve unit</td>
<td>A few ms</td>
<td>• No response from master unit; master continues to operate as before</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reserve unit status word indicates “Not all (i.e. no) DP slaves present”</td>
</tr>
<tr>
<td>Failure of ET 200M (IM 153-3) power supply</td>
<td>A few ms</td>
<td>1. All accessible DP slaves are switched over</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Automatic master-reserve change-over</td>
</tr>
</tbody>
</table>
4.4 Networks Via Which The Two Stations Can Be Linked

The two stations can be linked via MPI, PROFIBUS or Industrial Ethernet. Because of the slow transmission speed, the MPI option can, however, only be used if volume of data transferred is relatively small (1 Kbyte max.).

You must copy the blocks for redundant software backup from the specified library according to the logical connection configured.

Options for Linking S7-300

<table>
<thead>
<tr>
<th>Stations Networked Via…</th>
<th>Network Connection Interface</th>
<th>Transmission Speed</th>
<th>Connection Required</th>
<th>Library for Blocks Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI</td>
<td>CPU</td>
<td>187.5 KBAud</td>
<td>Non-configured connection</td>
<td>XSEND_300</td>
</tr>
<tr>
<td>PROFIBUS</td>
<td>CP 342-5</td>
<td>max. 1.5 MBaud</td>
<td>FDL connection</td>
<td>AG_SEND_300</td>
</tr>
<tr>
<td>Industrial Ethernet</td>
<td>CP 345-1</td>
<td>10 MBaud</td>
<td>ISO connection</td>
<td>AG_SEND_300</td>
</tr>
</tbody>
</table>

Options for Linking S7-400

<table>
<thead>
<tr>
<th>Stations Networked Via…</th>
<th>Network Connection Interface</th>
<th>Transmission Speed</th>
<th>Connection Required</th>
<th>Library for Blocks Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI</td>
<td>CPU</td>
<td>187.5 KBAud</td>
<td>Non-configured connection S7 connection</td>
<td>XSEND_400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BSEND_400</td>
</tr>
<tr>
<td>PROFIBUS</td>
<td>CP 443-5</td>
<td>max. 12 MBaud</td>
<td>FDL connection S7 connection</td>
<td>AG_SEND_400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BSEND_400</td>
</tr>
<tr>
<td>Industrial Ethernet</td>
<td>CP 443-1</td>
<td>10 MBaud</td>
<td>ISO connection S7 connection</td>
<td>AG_SEND_400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BSEND_400</td>
</tr>
</tbody>
</table>
4.5 Altering Configuration and Application Program in RUN Mode

In order to make alterations while the system is running it is normally necessary to de-activate redundant backup. To do so, you must set the 'De-activate redundant backup' bit in the control word at user level. After that bit has been set, the master unit continues to process the application program as before. In that situation, the master unit has the same characteristics as a standard S7-300 or S7-400 unit.

Once redundant backup has been de-activated, you modify the application program on the reserve unit first and then on the master unit. Once the modified application program has been reloaded onto both CPUs, you set the 'Activate redundant backup' bit in the control word. After that bit has been set, the redundant-backup link is restored and the system operates with increased availability again.

Changing the extent of the redundant-backup data areas is not possible. Data areas are also changed by a new FB call since this involves creation of a new instance DB. The content of the data can of course be changed if the extent of the data area remains the same. Changing the length of a data block also alters the extent of the redundant-backup data areas.

Tip: Dimension the data areas generously if you expect to have to extend them once the system is running.

The procedures for modifying the program and the configuration of the redundant-backup software are described below along with integration mechanisms.

Making Alterations to the Redundant-backup Section of the Program in RUN Mode

Proceed as follows:
1. De-activate redundant backup (set bit 11.0 of control word)
2. Modify and test out application program on reserve CPU.
3. Re-activate redundant backup (set bit 11.1 of control word)
4. Perform master-reserve change-over if necessary

Result: following master-reserve change-over, the CPU runs the modified application program (and you can now modify the application program on the second CPU in the same way).

Changing the extent of the redundant-backup data areas is not possible.

Switching Failed ET 200M DP Slave (IM 153-3) Back In

Proceed as follows:
1. Replace the defective interface module
or
2. Switch power back on

Result: the redundant-backup software automatically switches the DP slave to the interface module that is assigned to the master CPU.

Adding a New ET 200M DP Slave (IM 153-3) in the Redundant-backup Section

Proceed as follows:
1. De-activate redundant backup (set bit 11.0 of control word)
2. Set the reserve CPU to STOP Mode
3. Configure the new DP slave and transfer the hardware configuration.
4. Modify the relevant parameters in the call for FC 100 'SWR_START' (PAA_FIRST, PAA_LAST, SLAVE_NO, SLAVE_LEN).
5. Delete data blocks DB_WORK_NO, DB_SEND, DB_RCV, DB_A_B_NO, DB_B_A_NO.
6. Set this CPU to RUN Mode again (this CPU is using redundant-backup data that has not been updated)
7. Set the other CPU to STOP Mode (the CPU with the new configuration takes over control of the process)
8. Configure the new DP slave and transfer the hardware configuration
9. Modify the relevant parameters in the call for FC 100 ‘SWR_START’
 (PAA_FIRST, PAA_LAST, SLAVE_NO, SLAVE_LEN).
10. Delete data blocks DB_WORK_NO, DB_SEND, DB_RCV, DB_A_B_NO, DB_B_A_NO.
11. Set this CPU to RUN Mode again.

Result: the new ET 200M DP slave is included in the redundant-backup software.

Note: upgrading without resetting the redundant-backup area is can be performed by means of a
second, separate redundant-backup program with its own data area. That additive redundant-backup
program then manages the new additional data areas.

Replacing CPU or Upgrading Firmware

Proceed as follows:

1. Set the CPU to be replaced to STOP Mode.
2. Replace the CPU and transfer the hardware configuration, the application program blocks and
 the connection configuration.
3. Set that CPU to RUN Mode again.

Result: the new CPU runs as the reserve unit.

Disconnecting and Reconnecting Peripheral Modules

Peripheral modules can be disconnected and reconnected in the same way as with the standard S7.
Make sure that a master-reserve change-over does not take place while a module is being replaced
by de-activating redundant backup, for example (disabling master-reserve change-over).
4.6 Special Feature of Programming in CFC

If you write your application program in CFC, you must invoke the block FC 100 ‘SWR_START’ from within a function block (FB). You must write the necessary program in STL. Only that FB can be entered in the ‘Startup’ group in CFC.

We have provided a ready-made FC in which the necessary program sequence is programmed. It is located in the ‘Blocks’ container of the S7-400 example application. The function block is called ‘FC 99’.
4.7 Modules Suitable for Use With Redundant Software Backup

At present, the following modules are suitable for use in systems with redundant software backup (as at 02/98). The range of such modules is continually being added to. If you have any questions or would like to use other modules, please contact Customer Support.

CPUs Suitable for Use

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 315-2DP</td>
<td>6ES7 315-2AFxx-0AB0</td>
</tr>
<tr>
<td>CPU 316-2DP</td>
<td>6ES7 316-2AGxx-0AB0</td>
</tr>
<tr>
<td>CPU 318-2DP</td>
<td>6ES7 316-2AJxx-0AB0</td>
</tr>
<tr>
<td>CPU 412-1</td>
<td>6ES7 412-1XFxx-0AB0</td>
</tr>
<tr>
<td>CPU 412-2</td>
<td>6ES7 412-2XGxx-0AB0</td>
</tr>
<tr>
<td>CPU 413-1</td>
<td>6ES7 413-1XGxx-0AB0</td>
</tr>
<tr>
<td>CPU 413-2DP</td>
<td>6ES7 413-2XGxx-0AB0</td>
</tr>
<tr>
<td>CPU 414-1</td>
<td>6ES7 414-1XGxx-0AB0</td>
</tr>
<tr>
<td>CPU 414-2DP</td>
<td>6ES7 414-2XGxx-0AB0</td>
</tr>
<tr>
<td>CPU 414-3DP</td>
<td>6ES7 414-3XJxx-0AB0</td>
</tr>
<tr>
<td>CPU 416-1</td>
<td>6ES7 416-1XJxx-0AB0</td>
</tr>
<tr>
<td>CPU 416-2DP</td>
<td>6ES7 416-2XKxx-0AB0</td>
</tr>
<tr>
<td>CPU 416-3DP</td>
<td>6ES7 416-3XLxx-0AB0</td>
</tr>
<tr>
<td>CPU 417-4</td>
<td>6ES7 417-4XLxx-0AB0</td>
</tr>
</tbody>
</table>
Communication Modules With DP Master Function Suitable for Use

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication module CP 443-5 Extended</td>
<td>6EK7 443-5DXxx-0XE0</td>
</tr>
<tr>
<td>(for connection to PROFIBUS network)</td>
<td></td>
</tr>
<tr>
<td>DP master interface IM 467 or IM 467-FO</td>
<td>6ES7 4675GJxx-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 4675FJxx-0AB0</td>
</tr>
</tbody>
</table>

Suitable Communication Modules for Linking the Stations

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication module CP 342-5</td>
<td>6ES7 342-5DA00-0XE0</td>
</tr>
<tr>
<td>Communication module CP 343-1</td>
<td>6EK7 343-1BA00-0XE0</td>
</tr>
<tr>
<td>Communication module CP 443-5 Extended</td>
<td>6EK7 443-5DXxx-0XE0</td>
</tr>
<tr>
<td>(for connection to PROFIBUS network)</td>
<td></td>
</tr>
<tr>
<td>Communication module CP 443-1 ISO</td>
<td>6EK7 443-1BXxx-0XE0</td>
</tr>
<tr>
<td>(for connection to Industrial Ethernet)</td>
<td></td>
</tr>
</tbody>
</table>

Suitable Modules for ET 200M Distributed I/O Device

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP slave interface IM 153-3</td>
<td>6ES7 153-3AA00-0XB0 for version 2 or later</td>
</tr>
<tr>
<td></td>
<td>6ES7 153-3AA01-0XB0</td>
</tr>
<tr>
<td>2x DP slave interface IM 153-2</td>
<td>6ES7 153-2AA02-0XB0 for version 2 or later</td>
</tr>
<tr>
<td></td>
<td>6ES7 153-2AB01-0XB0 for version 2 or later</td>
</tr>
<tr>
<td>All digital and analogue modules for ET 200M</td>
<td>(See catalogue ST70)</td>
</tr>
<tr>
<td>Counter module FM 350</td>
<td>6ES7 350-1AH01-0AE0</td>
</tr>
<tr>
<td>CP 341 (20 mA TTY, RS232, RS422/485)</td>
<td>6ES7 341-1xH01-0AE0</td>
</tr>
</tbody>
</table>
4.8 Communication With Other Stations

It goes without saying that a system with redundant software backup can also communicate with other stations. The following topics illustrate a number of possible solutions.

Since no communication modules can be used on the ET 200M distributed I/O device, communication must take place via CPs that are used on the CPU.

In order to increase the availability of communication tasks, you must plug in one CP on the station A CPU and one on the station B CPU.

See also:
Communication With an S7-300/S7-400 Station
Communication With a Second System with Redundant Software Backup
4.8.1 Communication With an S7-300/S7-400 Station

Configuring the Connections with the Standard System

1. Configure one connection from Station A to the target S7-300/400 station.
2. Configure one connection from Station B to the target S7-300/400 station.

Application Program for Station A and B

In order that communication failure does not occur, the communication modules must also be run from the reserve unit. For that reason, we recommend that you use the following structure for the redundant-backup application program:

In FC 1 you program the calls for the communication blocks. Make sure that at least the job number R_ID is different for Station A and Station B.

The status word should be included in the data area transferred so that the target unit can analyze which connection is active. Subsequent analysis of the data received takes place only on the master unit.

If you write your application program in CFC, you should first program FC 1 in LAD, FBD or STL. It must not contain any process variables or message numbers.
Example of Program Sequence in FC1

```plaintext
FC1: Title:
Comment:

Network_A: Title:
Comment:

A: DB9.DEK 0.3
   JC ASB
   I DNW16#3
   T KR_ID
   JU BSEN

ASB: I DNW16#4
     T KR_ID

BSEN: CALL SFB 12, 08H10
     //call BSEND with selected R_ID
     PRO :=M0 0
     D :=M0 1
     R_ID :=W16#2
     DONE :=M0 2

Press F1 for help
```
4.8.2 Communication With a Second System With Redundant Software Backup

Configuring the Connections

In order that the two systems can switch over independently of one another, a total of 4 connections must be configured.

1. Configure two connections from Station A to the redundant-backup system.
2. Configure two connections from Station B to the redundant-backup system.

Application Program for Station A and B

In order that communication failure does not occur, the communication modules must also be run from the reserve unit. For that reason, we recommend that you use the following structure for the redundant-backup application program:

In FC 1 you program the calls for the communication blocks for station A of the communication peer and in FC 2 you program the calls for the communication blocks for station B of the communication peer. Make sure that at least the job number R_ID is different for Station A and Station B.

The status word should be included in the data area transferred so that the target unit can analyze which connection is active. Subsequent analysis of the data received takes place only on the master unit.

If you write your application program in CFC, you should first program FC 1 in LAD, FBD or STL. It must not contain any process variables or message numbers.

Cyclic program OB 1 or timer-controlled program OB 35

Invoke FB 101 at the beginning of OB 1 or OB 35 citing the parameter CALL_POSITION = TRUE. You can process the status and control information in the specified instance DB.

Analyze the status information and program the CPU so that it skips the redundant-backup application program when it is running as the reserve unit.

Write your redundant-backup application program here.

Write your communication program here.

Invoke FB 101 at the end of OB 1 or OB 35 citing the parameter CALL_POSITION = FALSE. This informs the system that processing of the redundant-backup application program is complete.

In FC 1 you program the calls for the communication blocks for station A of the communication peer and in FC 2 you program the calls for the communication blocks for station B of the communication peer. Make sure that at least the job number R_ID is different for Station A and Station B.
Example of Program Sequence in FC1/FC2

```
<table>
<thead>
<tr>
<th>Address</th>
<th>Decl.</th>
<th>Name</th>
<th>Type</th>
<th>Initial Va</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in_out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 temp</td>
<td>TEMP</td>
<td>R_ID</td>
<td>DNORD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FC1: Title:

Comment:

Network R: Title:

Comment:

```

A DBB.DBX 8.3 //check of PLC_class
JC ASB

T DM#16#3 //set R_ID for PLC A
JR BSEN

ASB: I DM#16#4 //set R_ID for PLC B
T R_ID

BSEN: CALL SFB 12 , DS110 //call BSEND with selected R_ID
PRO :=M0 0
V :=M0 1
ID :=M16#2
R_ID :=#R_ID
DONE :=M0 2
```

Press F1 for help
4.9 Standby Concept for Redundant Software Backup

In addition to the standard scenario in which two stations form a master-reserve combination, there is also another variation referred to as the standby concept.

The term standby concept may be new to you but you are bound to be familiar with the principle of the standby concept. You will be familiar with the system used in processes such as motor vehicle production whereby a person is kept on standby to step in if any of a particular group of employees is absent. This is the standby concept we are referring to.

The standby concept for redundant software backup is the same. If any one of a group of stations fails (Station 1 or Station 2 in our diagram), a reserve unit steps in (Station R in our diagram) and takes over the task of the failed unit.

What Are the Important Points to Remember for the Standby Concept?

There are basically three requirements for the standby concept:

- There must be a redundant-backup link (connection) between Station 1 and Station R and a second between Station 2 and Station R.
- The application programs for Station 1 and Station 2 must be loaded on the reserve unit (Station R).
- The reserve unit (Station R) must be able to access the ET 200M distributed I/O devices of Station 1 and Station 2 (there are two DP masters on Station R).

Standby Redundant Backup

![Diagram of Standby Redundant Backup]

**Redundant-backup Section 1**
- Station 1
- Reserve Station for Station 1 and 2
- ET 200M Distributed I/O Device with IM 153-3

**Redundant-backup Section 2**
- Station 2
- ET 200M Distributed I/O Device with IM 153-3
4.10 Using Error-Handling OBs

In order that the system does not respond by switching to STOP Mode in the event of errors/events, you should make use of the facility for placing responses in priority classes (organization blocks).

In order to prevent the system responding to failure of a DP slave by switching to STOP Mode, the following error-handling OBs should also be present on the CPU in addition to OB 86 (with FC 102 ‘SWR_DIAG’):

- OB 80  Cycle time overrun can occur during master-reserve change-over
- OB 82  Diagnostic alarm from a module on the redundant-backup DP slave interface (e.g. IM 153-3)
- OB 83  Disconnection/reconnection alarm from modules on the DP slave interface
- OB 85  Program run error; occurs if a DP slave interface fails
- OB 87  Communication fault
- OB 122 Peripheral access error (IM 153-3 or module on station has failed)

These OBs allow the application program to respond to the faults concerned. The redundant-backup software does not analyze those OBs nor initiate any subsequent response.

To increase availability, other alarm OBs can also be loaded.
5 Example of Redundant Software Backup Using SIMATIC S7-300

In order to provide as quick and easy an introduction as possible, we have created a specimen project. That specimen project is ready to run and can also be modified in any way you require.

Based on a simplified model of a road-tunnel monitoring system, it demonstrates how simple the necessary configuration and programming is. The example is based on two stations with a CPU 315-2DP central processing unit.

Particular operations and settings specific to redundant software backup are dealt with in detail on the following pages. General information that you will already be familiar with from configuring and programming an S7-300 or S7-400, such as creating a project or configuring the CPU, is included only where it is necessary for an understanding of the examples.
5.1 Description of Task and System Layout

Description of Task
Two fans are used for ventilating a tunnel. Each fan has two possible speeds which are selected according to the measured concentration of harmful substances in the air. The harmful substance concentration levels are measured by two analogue sensors.

The fans are the central components of the system as a whole and require high levels of availability. The application program for controlling the fans is therefore loaded on both stations.

For statistical purposes, the number of vehicles passing through the tunnel each day is recorded. Vehicles entering and leaving the tunnel are detected by road sensors at each end of the tunnel. This part of the system requires only the availability level provided by the standard S7 and is therefore loaded on station A only.

The lighting is monitored by four binary sensors. If the lighting in any of those four sections fails, it is indicated by output of a binary signal for the relevant section. This part of the system requires only the availability level provided by the standard S7 and is therefore loaded on station B only.

Tunnel Monitoring System Layout
5.2 Hardware Layout for Example Using S7-300

The diagram below shows the hardware layout required. It consists of two S7-300 stations each with a CPU 315-2DP and an ET 200M DP slave. The IM 153-3 DP interface of the ET 200M has one connection to the CPU in station A and one to the CPU in station B.

Station A and station B are linked to one another by means of a CP 342-5 connected to a PROFIBUS network.

Hardware Layout for S7-300 Example

Hardware Used
The modules used in the example are detailed in the hardware configuration of the specimen project.
### 5.3 Configuring the Hardware

If you wish to check on or alter the hardware configuration of the specimen project, proceed as follows:

1. Create a project with two stations (e.g. station A and station B) and then open station A.
2. Select a module rack from the hardware catalogue.
3. Open the module rack (for station A) and insert the power supply unit, the CPU 315-2DP and the necessary central I/O peripherals.
4. Open the second station and repeat steps 2 and 3.
5. Drag and drop the IM 153-3 onto the DP master system ("railway line").
6. Insert the ET 200M I/O peripherals.
7. Repeat steps 5 and 6 if you want to connect more than one ET 200M DP slave to the DP master system.
8. Copy the complete DP branch to the second DP master system.

#### Rules for Hardware Configuration

The configuration of the local peripherals must be identical on both stations. In order that consistency is maintained, you should always copy the complete DP master system of the first station to the DP master system of the second station (even if only minor alterations have been made). To do so you use the menu command **Edit > Insert Redundant Copy**.

Using the menu command **Edit > Insert Redundant Copy** ensures that the peripheral addresses for the DP slaves are identical on both stations.

#### Example of Hardware Configuration on Station A and Station B

The screenshot below shows an example of identical hardware configurations on both DP master systems.
5.4 Configuring the Networks

If you wish to check on or alter the network configuration of the specimen project, you should observe the instructions below.

What networks are there in a system with redundant software backup?

On systems with redundant software backup, a distinction is made between

- the network via which the two stations are linked with one another (also called the network for the redundant backup link); exchange of data between the two stations takes place via this network;
- the PROFIBUS-DP networks to which the DP master systems and local ET200M peripherals are connected; this network is used by the stations to run the local peripherals.

Network for data exchange between the two stations

The data that is transferred from the master to the reserve unit can be sent via an MPI, PROFIBUS or industrial Ethernet.

In our example, the data is exchanged with the aid of communications modules on a PROFIBUS network.

1. Create a PROFIBUS network.
2. Connect the CP of station A to the PROFIBUS network and select a node address (e.g. PROFIBUS address 3).
3. Connect the CP of station B to the PROFIBUS network and select a node address (e.g. PROFIBUS address 4).

PROFIBUS-DP networks for the local peripherals

Local ET 200M peripherals have two DP interfaces of which one is connected to the DP master system of station A and the other to the DP master system of station B.

Proceed as follows:

1. Create two PROFIBUS-DP networks (for the two DP master systems)
2. Select the DP connection of the CPU on station A and connect it to the first PROFIBUS-DP network.
3. Select the DP connection of the CPU on station B and connect it to the second PROFIBUS-DP network.
4. From the hardware catalogue, select the IM 153-3 (located under PROFIBUS-DP in the ET 200M directory).
5.5 Configuring the Connections

If you wish to check on or alter the configuration of the connections in the specimen project, you should observe the instructions below.

A PROFIBUS network with FDL connections was chosen for data exchange between the two stations in the specimen project.

To create the required logical connection, proceed as follows:

1. Switch from SIMATIC Manager to network view.
2. On the menu, select **View > DP Slaves** so that in Network View the DP slaves are shown as well.
3. Double-click the connections table in network view.
   **Result:** a dialog box for defining the connection opens.
4. Select the two stations and specify an FDL connection.

![Network View Showing DP Slaves and Connections Table](image_url)
5.6 Creating the Application Program

If you wish to check on or alter the application program for the specimen project, you should follow the instructions below.

The application program for the S7-300 specimen project consists of

- a redundant-backup program of which there is an identical copy on each of the two stations and which runs as part of the timer-controlled program OB 35, and
- two different (non-duplicated) standard application programs, one on each of the two stations, which run as part of the cyclic program OB 1.

Structure of the Application Program

The diagram below illustrates at which points the redundant software backup blocks have to be invoked.

**OB 100 Startup Program**

```plaintext
CALL FC 100
AG_KENNUNG :='A'
DB_WORK_NO :=DB1
DB_SEND_NO :=DB2
DB_RCV_NO :=DB3
MPI_ADR :=4
etc.
```

The startup OB should invoke FC 100. FC 100 should then inform the system which addresses are to be used for communication and which data areas are to be exchanged/updated between the two stations. Data areas are the process image of the inputs, bit memory address areas, data blocks and the instance data blocks for IEC timers/counters.

**OB 35 Timer-controlled Program**

```plaintext
CALL FB 101, DB5
DB_WORK_NO :=DB1
CALL_POSITION :=TRUE
RETURN_VAL :=MW115
EXT_INFO :=MW117
```

Instructions for redundant-backup application program (program section exists on station A and station B)

```plaintext
M001: CALL FB 101, DB5
DB_WORK_NO :=DB1
CALL_POSITION :=FALSE
RETURN_VAL :=MW119
EXT_INFO :=MW121
```

FC 101 should be invoked at the beginning of OB 35 citing the parameter CALL-POSITION = TRUE. The specified instance DB can be used to process status and control information.

Analyse the status information and program the CPU to skip the redundant-backup application program when it is acting as the reserve unit.

This is where you insert your redundant-backup application program.

FC 101 should be invoked at the end of OB 35 citing the parameter CALL_POSITION = FALSE. In this way the system is informed that processing of the redundant-backup application program has been completed.

**OB 86 Diagnostic Program**

```plaintext
CALL FC 102
DB_WORK :=#16#1
OB86_EV_CLASS :=#OB86_EV_CLASS
OB86_FLT_ID :=#OB86_FLT_ID
RETURN_VAL :=MW130
```

OB 86 should invoke FC 102 citing the relevant startup information. This function call is required in order that the system can respond automatically to the failure of a DP slave (automatic changeover from master to reserve).
Block Structure
The screen shot below illustrates the structure of the application program for the S7-300 example. The nesting of the blocks can be seen from that structure.

Application Program Rules
The application program should be set out in such a way that the program for the redundant backup section is separate from the non-duplicated section.

The redundant-backup section of the program may only use IEC counters and IEC timers. The use of S7 counters and/or S7 timers is not permitted as those operands can not be exchanged between the two stations.

See also:
FC 100 ‘SWR_START’
FB 101 ‘SWR_ZYK’
FC 102 ‘SWR_DIAG’
5.7 Connecting Operator Panels and Display Units

For visualization of process data and messages, SIMATIC S7 offers a new generation of operator panels that is particularly easy to use.

The OP 7 and OP 17 models are particularly suited to use in systems with redundant backup. Both units permit manual changeover between multiple stations at the touch of a button. This means you can switch between operation and monitoring on station A and station B as and when you choose.

In our specimen project we have chosen an OP 7 operator panel for the S7-300 example. The display for the status and control words and a number of message texts (relating to the application program) are ready-configured in the specimen project.

You can edit the message texts to your own requirements. To configure message texts, you require the program ProTool.

See also:

Description of operator panels OP 7 and OP 17 and the configuration program ProTool
6 Example of Redundant Software Backup Using SIMATIC S7-400

In order to provide as quick and easy an introduction as possible we have created a specimen project. That specimen project is ready to run and can also be modified in any way you require.

Based on a simplified model of a road-tunnel monitoring system, it demonstrates how simple the necessary configuration and programming is. The example is based on two stations with a CPU 414-2DP central processing unit.

Particular operations and settings specific to redundant software backup are dealt with in detail on the following pages. General information that you will already be familiar with from configuring and programming an S7-300 or S7-400, such as creating a project or configuring the CPU, is included only where it is necessary for an understanding of the examples.
6.1 Description of Task and System Layout

Description of Task
Two fans are used for ventilating a tunnel. Each fan has two possible speeds which are selected according to the measured concentration of harmful substances in the air. The harmful substance concentration levels are measured by two analogue sensors. The fans are the central components of the system as a whole and require high levels of availability. The application program for controlling the fans is therefore loaded on both stations.

The tunnel has to be closed if the maximum permissible concentration of harmful substances is present for more than two minutes. The entrance to the tunnel at each end is controlled by a set of traffic lights. For safety reasons, this section of the system also requires a high level of availability.

Particular operations and settings specific to redundant software backup are dealt with in detail on the following pages. General information that you will already be familiar with from configuring and programming an S7-300 or S7-400, such as creating a project or configuring the CPU, is included only where it is necessary for an understanding of the examples.

Tunnel Monitoring System Layout
6.2 Hardware Layout for Example Using S7-400

The diagram below shows the hardware layout required. It consists of two S7-400 stations each with a CPU 414-2DP and an ET 200M DP slave. The IM 153-3 DP interface of the ET 200M has one connection to the CPU in station A and one to the CPU in station B.

Station A and station B are linked to one another by means of a CP 443-5 connected to a PROFIBUS network.

Hardware Layout for S7-400 Example

System Visualization Using WinCC

In the specimen project we have used an operator station for operation and monitoring purposes and for system visualization.

In order to make operation and monitoring as easy as possible for you, we have provided a ready-made screen block for WinCC. You will find the corresponding configuration in the specimen project.

Hardware Used

The modules used in the example are detailed in the hardware configuration of the specimen project.
6.3 Configuring the Hardware

If you wish to check on or alter the hardware configuration of the specimen project, proceed as follows:

1. Create a project with two stations (e.g. station A and station B) and then open station A.
2. Select a module rack from the hardware catalogue.
3. Open the module rack (for station A) and insert the power supply unit, the CPU 414-2DP and the necessary central I/O peripherals.
4. Open the second station and repeat steps 2 and 3.
5. Drag and drop the IM 153-3 onto the DP master system (“railway line”).
6. Insert the ET 200M I/O peripherals.
7. Repeat steps 5 and 6 if want to connect more than one ET 200M DP slave to the DP master system.
8. Copy the complete DP branch to the second DP master system.

Rules for Hardware Configuration

The configuration of the local peripherals must be identical on both stations. In order that consistency is maintained, you should always copy the complete DP master system of the first station to the DP master system of the second station (even if only minor alterations have been made). To do so you use the menu command **Edit > Insert Redundant Copy**.

Using the menu command **Edit > Insert Redundant Copy** ensures that the peripheral addresses for the DP slaves are identical on both stations.

Example of Hardware Configuration on Station A and Station B

The screen shot below shows an example of identical hardware configurations on both DP master systems.
6.4 Configuring the Networks

If you wish to check on or alter the network configuration of the specimen project, you should observe the instructions below.

**What networks are there in a system with redundant software backup?**

On systems with redundant software backup, a distinction is made between

- the network via which the two stations are linked with one another (also called the network for the redundant backup link); exchange of data between the two stations takes place via this network;
- the PROFIBUS-DP networks to which the DP master systems and local ET200M peripherals are connected; this network is used by the stations to run the local peripherals.

**Network for data exchange between the two stations**

The data that is transferred from the master to the reserve unit can be sent via an MPI, PROFIBUS or industrial Ethernet.

In our example, the data is exchanged with the aid of communications modules on a PROFIBUS network.

1. Create a PROFIBUS network.
2. Connect the CP of station A to the PROFIBUS network and select a node address (e.g. PROFIBUS address 3).
3. Connect the CP of station B to the PROFIBUS network and select a node address (e.g. PROFIBUS address 4).

**PROFIBUS-DP networks for the local peripherals**

Local ET 200M peripherals have two DP interfaces of which one is connected to the DP master system of station A and the other to the DP master system of station B.

Proceed as follows:

1. Create two PROFIBUS-DP networks (for the two DP master systems)
2. Select the DP connection of the CPU on station A and connect it to the first PROFIBUS-DP network.
3. Select the DP connection of the CPU on station B and connect it to the second PROFIBUS-DP network.
4. From the hardware catalogue, select the IM 153-3 (located under PROFIBUS-DP in the ET 200M directory).
6.5 Configuring the Connections

If you wish to check on the configuration of the connections in the specimen project or if you want to create the configuration for the connections yourself, you should observe the instructions below.

A PROFINET network with FDL connections was chosen for data exchange between the two stations in the specimen project.

To create the required logical connection, proceed as follows:

1. Switch from SIMATIC Manager to network view.
2. On the menu, select View > DP Slaves so that in Network View the DP slaves are shown as well.
3. Double-click the connections table in network view.
   
   **Result:** a dialog box for defining the connection opens.
4. Select the two stations and specify an FDL connection.

---

**Network View Showing DP Slaves and Connections Table**

![Network View Showing DP Slaves and Connections Table](image-url)
6.6 Creating the Application Program

If you wish to check on or alter the application program for the specimen project, you should follow the instructions below.

The application program for the specimen project consists of a program with full redundant backup. There is an identical copy of the program on each of the two stations and it runs as part of the cyclic program OB 1.

Structure of the Application Program

The diagram below illustrates at which points the redundant software backup blocks have to be invoked.

**OB 100 Startup Program**

```plaintext
CALL FC 100
AG_KENNUNG :='A'
DB_WORK_NO :=DB1
DB_SEND_NO :=DB2
DB_RCV_NO :=DB3
MPI_ADR :=4
etc.
```

The startup OB should invoke FC 100. FC 100 should then inform the system which addresses are to be used for communication and which data areas are to be exchanged/updated between the two stations. Data areas are the process image of the inputs, bit memory address areas, data blocks and the instance data blocks for IEC timers/counters.

**OB 1 Cyclic Program**

```plaintext
CALL FB 101, DB5
DB_WORK_NO :=DB1
CALL_POSITION :=TRUE
RETURN_VAL :=MW115
EXT_INFO :=MW117
```

FC 101 should be invoked at the beginning of OB 1 citing the parameter CALL-POSITION = TRUE. The specified instance DB can be used to process status and control information.

```
UN DB5.DBX 8.1 SPB M001
```

Analyse the status information and program the CPU to skip the redundant-backup application program when it is acting as the reserve unit.

This is where you insert your redundant-backup application program.

```
M001: CALL FB 101, DB5
DB_WORK_NO :=DB1
CALL_POSITION :=FALSE
RETURN_VAL :=MW119
EXT_INFO :=MW121
```

FC 101 should be invoked at the end of OB 1 citing the parameter CALL_POSITION = FALSE. In this way the system is informed that processing of the redundant-backup application program has been completed.

**OB 86 Diagnostic Program**

```plaintext
CALL FC 102
DB_WORK :=#16#1
DB86_EV_CLASS :=#DB86_EV_CLASS
DB86_FLT_ID :=#DB86_FLT_ID
RETURN_VAL :=MW130
```

OB 86 should invoke FC 102 citing the relevant startup information. This function call is required in order that the system can respond automatically to the failure of a DP slave (automatic changeover from master to reserve).
Block Structure
The screen shot below illustrates the structure of the application program for the S7-400 example. The nesting of the blocks can be seen from that structure.

Application Program Rules
The redundant-backup section of the program may only use IEC counters and IEC timers. The use of S7 counters and/or S7 timers is not permitted as those operands can not be exchanged between the two stations.

See also:
- FC 100 'SWR_START'
- FB 101 'SWR_ZYK'
- FC 102 'SWR_DIAG'
6.7 Connecting Operator Panels and Display Units

For visualization of process data and messages, SIMATIC S7 offers a new generation of operator panels and display units that is particularly easy to use.

In our specimen project we have chosen an operator station (OS) for system visualization in the S7-400 example. In order to make operation and monitoring using WINCC as easy as possible for you, we have provided a ready-made screen block.

You can use the screen block to perform the following functions from an operator station (OS):

- initiate changeover between master and reserve;
- cancel/reactivate redundant backup between master and reserve and view the redundant backup status;
- view the status of the CPU connection (redundant backup link);
- view the standby status of the DP slaves.

See also:

Screen Block for Operating and Monitoring Tasks
7 Using Redundant Software Backup and Operator Stations with WinCC

7.1 Screen Block for Operating and Monitoring Tasks

In order to make operating and monitoring tasks as straightforward as possible, we have provided a ready-made screen block. It is installed automatically by the redundant-backup software SETUP program, provided WinCC is installed on your system.

The topics which follow show you how to configure the screen block using WinCC. In addition to that configuration, you also have to set up a redundant-backup link on your operator station so that the screen block continues to be updated in the event of failure of the master station or change-over from master to reserve station. How to set up the link and what special considerations need to be observed are explained in a separate description. You will find that description on the CD in the document called ‘SWR_WinCC_deutsch.doc’ or ‘SWR_WinCC_deutsch.pdf’.

Function of the Screen Block

The screen block enables the following functions to be performed on an operator station (OS):

- Initiate change-over from master to reserve station
- De-activate redundant software backup between master and reserve unit (disable switch-over between master and reserve) or re-activate it (enable switch-over between master and reserve)
- View the status of the CPU link (redundant-backup link)
- View the standby status of the DP slaves

View of Screen Block

See also:

Configuring the Screen Block Using WinCC
7.2 Configuring the Screen Block Using WinCC

You incorporate the screen block into a screen in WinCC. To do so, you must configure the screen block by means of the appropriate properties dialog boxes.

We recommend you follow the steps below when configuring the screen block:

1. Configuring the Connection for WinCC
2. Defining the Variables of the Screen Block
3. Inserting the Screen Block in a Screen
4. Linking the Display Fields with the Variables (Dynamizing the Screen)
### 7.2.1 Configuring the Connection for WinCC

In order that your WinCC station is linked to the automation system, a connection with the redundant-backup system has to be configured. Only one connection from the operator station to Station A is required since the connection with Station B is established by means of the WinCC connection switcher.

1. From the Control Center open the directory ‘SIMATIC S7 PROTOCOL SUITE’ (in the container ‘Tag Management’).
2. Select the directory in which you wish to create the connection (e.g. MPI).
3. Click the right mouse button and insert a new connection.
4. Select the new connection and give it a name, e.g. ‘SW_REDUNDANZ’.
5. Click the right mouse button and from the pop-up menu choose **Properties**.
6. Enter the node address of the station to which the connection is to be established (we recommend you enter the node address of Station A).
7.2.2 Defining the Variables of the Screen Block

Once you have created a connection between the operator station and one of the stations, we recommend that you define the variables of the screen block. To do so, proceed as follows:

1. In the Control Center, open the directory ‘Structure Types’ (in the container ‘Data Types’).
2. Click the right mouse button and insert a new structural variable.
3. Select the new structural variable.
4. Click the right mouse button and from the pop-up menu choose Properties. 
   **Result:** the ‘Structure Properties’ dialog box appears.

6. Enter a name for the structural variable, e.g. ‘SWR’.
7. Choose the ‘New Element’ button and insert the variables of the screen block (4 variables).
8. Give each variable an appropriate name and data type.

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type</th>
<th>Offset</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORD Status</td>
<td>WORD</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BIT MasterSwitch</td>
<td>BIT</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>BIT RedTurnOn</td>
<td>BIT</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>BIT RedTurnOff</td>
<td>BIT</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
9. In the directory ‘SIMATIC S7 PROTOCOL SUITE’ select the new connection previously inserted
   (‘SW_REDUNDANZ’).
10. Click the right mouse button and insert a new variable.
11. Give the variable a name, e.g. ‘SWR_KESSEL’ and select data type ‘SWR’.
12. Specify the number of the instance DB and the offset for the structural variables in the
   ‘Addresses’ box (offset is DW 8).

   **Result:** the screen block now knows which status word and which control bits it should access.
7.2.3 Inserting the Screen Block in a Screen

Technically, the screen block is implemented as an OLE Control Element. In order to insert the screen block in a screen, proceed as follows:

1. In the Control Center, open a screen using the Graphic Designer.
2. Select the OLE Control Element using menu command **Object Palette > Smart Objects > OLE Control**.
3. Click the left mouse button and draw a box into which the screen block is to be inserted.
   **Result:** when you release the mouse button, a window appears for registering the screen block.
4. Use the menu command **Insert > OLE Control** to select the object ‘WinCCSWRedundanzProject.SWRedundanz Control’.
   **Result:** the screen block is now visible on the screen and is known to WinCC.
7.2.4 Linking the Display Fields with the Variables (Dynamizing the Screen)

Once you have inserted the screen block in the screen, you should link the display fields with the variables. To do so, proceed as follows (variable names used are examples):

1. Select the screen block.
2. Click the right mouse button and choose **Properties** from the pop-up menu.
   
   **Result:** the ‘Object Properties’ dialog box appears.

3. In the left-hand box, select ‘OLE Control Properties’
4. In the right-hand box, enter the name ‘SWR_TEST’ for the attribute ‘tagname’.
5. Click the display icon (light bulb) on the line ‘Status’ and from the selection box that appears, select ‘SWR_KESSEL.Status’.
6. Click the display icon (light bulb) on the line ‘MasterSwitch’ and from the selection box that appears, select ‘SWR_KESSEL.MasterSwitch’.
7. Click the display icon (light bulb) on the line ‘RedTurnOn’ and from the selection box that appears, select ‘SWR_KESSEL.RedTurnOn’.
8. Click the display icon (light bulb) on the line ‘RedTurnOff’ and from the selection box that appears, select ‘SWR_KESSEL.RedTurnOff’.

9. Save the changes in the Graphic Designer.

**Result:** the screen block is now functional and can be started using ‘WinCC-Runtime’.