
Technical documentation

Field bus protocol for the
intelligent compact drive IclA IFx

CANopen DS301

Operating system:

Order no.: 0098441113185

Edition: -000, 05.03

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03

Important information IFX-CANopen DS301

Important information

These compact drives are designed for general use. They are state of
the art and are designed to be as safe as possible. However, drives
and drive controllers that are not specifically designed for safety
functions are not approved for applications where the functioning of the
drive could endanger persons. The possibility of unexpected or
unbraked movements can never be totally excluded without additional
safety equipment. For this reason personnel must never be in the
danger zone of the drives unless additional suitable safety equipment
prevents any personal danger. This applies for operating the machine
during production and also for all service and maintenance work on
drives and the machine. The machine design must ensure personal
safety. Suitable measures for prevention of property damage are also
required.

For more information see chapter 2, "Safety".

IFX-CANopen DS301 Table of contents
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Table of contents

Important infomation

Table of contents

Written conventions and note symbols

1 Introduction

1.1 Documentation and literature . 1-1

1.2 Directives and standards . 1-1

2 Safety

2.1 Qualifications of personnel . 2-1

2.2 Intended use. 2-1
2.2.1 Ambient conditions . 2-1
2.2.2 Intended use . 2-1

2.3 Safety instructions . 2-2
2.3.1 Structure of the safety instructions 2-2

3 Basics

3.1 CAN bus . 3-1

3.2 CANopen technology . 3-2
3.2.1 CANopen description language 3-2
3.2.2 Communications layers . 3-2
3.2.3 Objects . 3-3
3.2.4 CANopen profiles . 3-4

3.3 Field bus devices in the CAN bus 3-6

3.4 Operating modes and functions in
field bus operation . 3-6

4 CANopen communication

4.1 Communications profile . 4-1
4.1.1 Communications objects . 4-1
4.1.2 Communications relationships 4-7

4.2 Service data communication
(SDO communication) . 4-10

4.2.1 Overview . 4-10
4.2.2 SDO data exchange . 4-10
4.2.3 SDO message. 4-11
4.2.4 Writing and reading SDO data 4-12

4.3 Process data communication
PDO communication) . 4-15

4.3.1 PDO data exchange . 4-15
4.3.2 Dynamic and static PDO mapping 4-20
4.3.3 Receive PDO R_PDO

(master → compact drive) 4-21
4.3.4 Send PDO T_PDO4 (compact drive → master) . 4-24

4.4 Emergency service. 4-28
C-1

Table of contents IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
4.5 Synchronisation . 4-30
4.5.1 Synchronisation periods . 4-30
4.5.2 Synchronous data transmission 4-31

4.6 Network management objects 4-32
4.6.1 NMT services for controlling the compact drive. . . 4-33
4.6.2 NMT services for connection monitoring 4-35

5 Installation and setup

5.1 Installation . 5-1

5.2 Commissioning field bus connection 5-1
5.2.1 Starting field bus operation 5-1
5.2.2 Troubleshooting. 5-2

6 Examples for field bus operation

6.1 Overview. 6-1

6.2 Using SDO commands . 6-3
6.2.1 Writing parameters . 6-3
6.2.2 Read parameter . 6-4
6.2.3 Synchronous errors . 6-5

6.3 Changing operating states with PDO4 6-6
6.3.1 Switch power amplifier on and off 6-6
6.3.2 Triggering Quick-Stop . 6-8
6.3.3 Resetting errors. 6-9

6.4 Examples for the operating states with PDO4 6-10
6.4.1 Point-to-point mode – absolute positioning 6-11
6.4.2 Point-to-point mode – relative positioning 6-13
6.4.3 Speed mode . 6-14
6.4.4 Dimension setting . 6-15
6.4.5 Reference movement . 6-16

6.5 Error signalling via PDO4 . 6-17
6.5.1 Synchronous errors . 6-17
6.5.2 Asynchronous errors . 6-18

7 Diagnosis and troubleshooting

7.1 Field bus communication error diagnosis 7-1

7.2 Error messages . 7-1
7.2.1 Synchronous errors . 7-1
7.2.2 Asynchronous errors . 7-3
7.2.3 Errors in operational control via PDOs 7-4

8 Service

8.1 Service address . 8-1

9 Object directory

9.1 Overview. 9-1
9.1.1 Specifications for the objects. 9-1
9.1.2 Objects, overview . 9-2

9.2 Objects of the compact drive . 9-4
C-2

IFX-CANopen DS301 Table of contents
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
10 Glossaries

10.1 Abbreviations . 10-1

10.2 Glossary . 10-2

Index

Supplement
C-3

Table of contents IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
C-4

IFX-CANopen DS301 Written conventions and note symbols
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Written conventions and note symbols

Instructions for use Layout and format:

Introduction to the following instruction steps

� This is the first step.

� This is the second step.

Explanation:

Instructions consist of an introduction and the actual instruction steps.

Unless otherwise stated, the individual instruction steps must be
carried in the given sequence.

If an instruction step triggers a detectable reaction from the compact
drive, the response is described after the step. In this way you can
check that the step was correctly completed.

List symbol Layout and format:

Note on the contents of the list

• 1. list item

• 2. list item

– 1. list subitem

– 2. list subitem

• 3. list item

Explanation:

The actual list follows a note on the contents of the list. It can consist of
1 or 2 levels.

The list items are sorted alphanumerically or by priority.

User notes User notes contain general information, not safety information.

For an explanation of the safety instructions see chapter 2, "Safety".

This shows additional information on the current subject.
W-1

Written conventions and note symbols IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
W-2

IFX-CANopen DS301 Introduction
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
1 Introduction

1.1 Documentation and literature

Documentation • Datasheets for IcIA in the IclA Intelligent Compact Drives catalog
Order no. 005 9941 2010 001 D
Order no. 005 9941 2010 002 GB

• Controller manuals for IclA compact drives:
- Intelligent Compact Drive Field Bus Stepper Motor IclA IFS6x
Order no. 00 9844 1113 188 D
Order no. 00 9844 1113 189 GB

Literature • Controller Area Network
Konrad Etschberger, Carl Hanser Verlag
ISBN 3-446-19431-2

• CANopen
Holger Zeltwanger, VDE Verlag
ISBN 3-8007-2448-0

1.2 Directives and standards

CANopen Standards CANopen documentation by the CAN in Automation (CiA) user
organisation.

• ISO11898
Controller Area Network CAN part 1...4

• EN50325
Industrial Communication Subsystem based on ISO11898 for
controller device interfaces

• CiA Draft Standard 301
CANopen Application Layer and Communication Profile
Version 4.02, February 2002, CAN in Automation e.V.

CAN interest group CAN in Automation (CiA)

Am Weichselgarten 26

D-91058 Erlangen

www.can-cia.de
Documentation and literature 1-1

Introduction IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
1-2 Directives and standards

IFX-CANopen DS301 Safety
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
2 Safety

2.1 Qualifications of personnel

Only electrical and controller technicians qualified under
IEV 826-09-01 (modified) are authorized to set parameters on,
commission and operate the compact drive. The electrical and
controller technicians must be familiar with the contents of this manual
before starting work with and on the compact drive.

The electrical and controller technicians must have sufficient training,
knowledge and experience to recognize and avoid dangers.

The technicians must be familiar with the current standards,
regulations and work safety regulations that must be observed while
working on and with the compact drive.

2.2 Intended use

2.2.1 Ambient conditions

See the approved environmental conditions described in the data
sheet.

2.2.2 Intended use

The compact drive is a variable-speed drive with permanently excited
synchronous motor (stepper motor), integrated controller and power
electronics. As an option the compact drive can be fitted with a
gearbox and a holding brake.

Another option is a Hall sensor, which sends an index pulse and can
be used for blocking detection.

The compact drive may be used for industrial applications in the
system configuration described with a fixed connection only.

The environment in which the compact drive is to be installed and
operated must meet degree of protection IP54 as a minimum.

The compact drive must not be commissioned and operated until it has
been installed in conformity with EMC requirements. The compact
drive may only be used with the cables and accessories specified by
your local dealer.
Qualifications of personnel 2-1

Safety IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
2.3 Safety instructions

2.3.1 Structure of the safety instructions

All safety instructions are structured to comply with the US standard
ANSI Z535.4. Under this standard safety instructions are classified into
four core elements. A pictogram before the text allows an initial danger
classification.

The following general structure is derived from this:

Structure of the safety instructions under ANSI Z535.4

DANGER LEVEL

Description of the cause and source of the danger

Actions for avoiding the danger

Danger levels

DANGER

This indicates direct personal danger.

Can lead to serious injuries with fatal consequences if not observed.

WARNING

Indication of a recognizable danger.

Can result in serious injuries with fatal consequences and destruction
of the unit or system component if not observed.

CAUTION

Indication of a danger.

If this is ignored, minor personal injury and light damage to the unit or
system may be the result.
2-2 Safety instructions

IFX-CANopen DS301 Basics
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
3 Basics

3.1 CAN bus

The CAN bus (CAN: Controller Area Network) was originally
developed for fast, economical data transmission in automotive
engineering. In the meantime the CAN bus is also used in industrial
automation technology and has been further developed for
communication at field bus level.

Features The CAN bus is a standardized open bus, through which devices,
sensors and actuators from different manufacturers communicate with
each other. Features of the CAN bus are:

• Multimaster capacity
Every device on the field bus can send and receive data
independently without having to be assigned a "supervisory"
master functionality.

• Message-oriented communication
Devices can be linked into an existing network without requiring
reconfiguration of the entire system. It is not necessary to set the
address of a new device in the network.

• Prioritisation of messages
Messages with higher priority are sent first for time-critical
applications.

• Residual error probability
Various backup processes in the network reduce the probability of

an undetected, faulty data transfer to less than 10-11. In practice,
100%-secure transmission can be assumed.

Transmission technology In the CAN bus multiple devices are connected via a bus cable. Every
network device can send and receive messages. Data between
network devices are transmitted serially.

Network devices Examples of CAN bus devices are

• automation devices, e.g. PLCs

• PCs

• input and output modules

• drive controllers

• analysis devices

• sensors and actuators
CAN bus 3-1

Basics IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
3.2 CANopen technology

3.2.1 CANopen description language

CANopen is a device and manufacturer-independent network protocol
for communication over a CAN bus. Originally CANopen was
implemented in industry for controlling movement sequences, but now
it is used in many different areas of network communications, such as
medical technology, building automation and vehicle control.

3.2.2 Communications layers

CANopen uses the CAN bus technology for data communications.
CANopen is based on the ISO-OSI layer model on the data
communications basic network service. Three layers secure data
communications in the CAN bus:

• CAN: physical layer

• CAN: data link layer

• CANopen: application layer

Fig. 3.1 CANopen layer model

Physical layer The physical layer defines the electrical properties of the CAN bus –
such as plug connectors, cable length and properties, bit coding and
bit timing.
3-2 CANopen technology

IFX-CANopen DS301 Basics
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Data link layer The data link layer connects the network devices. It sets the priorities
of individual data packets and monitors and corrects errors.

Application layer The application layer uses communication objects (Communication
Objects = COB) for data exchange among the network devices.
Communication objects are elementary components for creating a
CANopen application.

3.2.3 Objects

All processes under CANopen are executed via objects. Objects
perform various tasks. As communication objects they transport data
to the field bus, control establishment of connections or monitor the
network devices. As device-specific objects they are directly connected
to the device. The device functions can be used and changed via the
device-specific objects.

Object directory The object directory of a device is the central connection for all objects.
All objects through which the other network devices can connect to the
device are listed here.

Fig. 3.2 Device model with object directory

The object directory contains objects that describe the data types and
execute communications tasks and device functions under CANopen.

C
A

N
 b

us

Power amplifier

Kommunikation

Application

Specific
functions

Object
directory

0000h
0001h

.
1000h

.
2000h

.
6000h

.
FFFFh

Device
functionsProcess data

objects (PDO)

Service data
objects (SDO)

SYNC, EMCY

Network
management NMT

Layer
management LMT

CANopen

Motor

communication
CANopen technology 3-3

Basics IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Object index Every object is addressed via a 16-bit index, which is shown as a
4-digit hexadecimal number. The objects are classified in groups in the
object index.

A list of all objects that can be used for the compact drive under
CANopen can be found in chapter 9, "Object directory".

Object group "data types" The messages that move over the network as bit streams have the
same meaning for sender and receiver with the data types. Data types
are agreed via the objects of the data types.

Object groups of the profiles CANopen objects carry out various tasks in field bus operation. Profiles
combine the objects in accordance with their prescribed tasks.

3.2.4 CANopen profiles

Standardised profiles Standardised profiles describe objects that can be applied to various
devices without additional configuration. The Interessengemeinschaft
CAN in Automation e. V. (CiA) [CAN interest group] has standardized
various profiles. They include:

• the DS301 communications profile

• the DSP402 "drives and motion profile" device profile

Fig. 3.3 CANopen reference model

Index (hex) Object groups Supported
by drive

0000h reserved 
0001h-009Fh static and complex data types 
00A0h-0FFFh reserved 
1000h-1FFFh communication profile, standardised in DS 301 Yes

2000h-5FFFh manufacturer-specific device profiles Yes

6000h-9FFFh standardised device profiles, e.g. in DSP 402 
A000h-FFFFh reserved 
Table 3.1 Object index

CAN bus

Physical Layer

Data Link Layer

Application Layer

CANopen Communication Profile (CiA DS 301)

Device Profile for Drives and Motion Control (CiA DSP 402)

Application
3-4 CANopen technology

IFX-CANopen DS301 Basics
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
DS-301 communications profile The CANopen communications profile forms the interface between
device profiles and the CAN bus. It was specified in 1995 under the
name DS301 and defines unified standards for common data
exchange between different device types under CANopen.

The communications profile objects in the device carry out the tasks of
data and parameter exchange with other network devices and
initialise, control and monitor the device in the network.
Communications profile objects are

• Process Data Objects (PDO)

• Service Data Objects (SDO)

• objects with special functions for synchronisation SYNC and for
error reporting and response EMCY

• objects of network management NMT for initialisation, error
monitoring and device status monitoring

Details of the communications profile objects can be found in
chapter 4, "CANopen communication".

DSP402 device profile The DSP402 device profile "drives and motion profile" describes
standardised objects for positioning, monitoring and configuring drives.

The compact drive does not support DSP402.

Manufacturer-specific profiles You can use the basic functions of a device with objects of
standardised device profiles. Only manufacturer-specific device
profiles offer the complete range of functions. They contain the
definitions for the special functions.
CANopen technology 3-5

Basics IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
3.3 Field bus devices in the CAN bus

Different field bus devices from Berger Lahr can be operated in the
same field bus segment. The CANopen bus offers a unified basis for
exchanging commands and data between compact drives and other
network devices.

Fig. 3.4 Field bus devices in the network

3.4 Operating modes and functions in field bus operation

This manual only described the protocol for the compact drive. You
can find the description of the operating modes, operating functions
and all parameters in the controller manual for the compact drive in the
"Operation" and "Parameters" chapters:

Operating modes • speed mode

• point-to-point mode

• referencing

Operating functions • definition of direction of rotation

• creating movement profile

• Quick Stop

• fast position capture

Setting options The following settings can be made over the field bus:

• reading and writing parameters

• monitoring inputs and outputs of the 24-V signal interface

• activating diagnostics and error monitoring functions
field bus mode

IclA
compact drives

Twin Line
controller

L

N

PC SPS
3-6 Field bus devices in the CAN bus

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
4 CANopen communication

4.1 Communications profile

4.1.1 Communications objects

CANopen manages communications between the network devices
with object directories and objects. With Process Data Objects (PDO)
and Service Data Objects (SDO) a network device can request the
object data from the object directory of another network device and – if
permissible – write modified values.

You can exchange parameter values, start movement functions of
specific CANopen bus devices or query status information by access to
the objects of the network devices.

Every CANopen network device administers an object directory in
which all objects for communication with it are listed.

Index, subindex The objects are addressed in the object directory with a 16-bit long
index.

The individual data fields of an object are specified by the subindex
entries. A data field consists of one or more subindex entries.

Index and subindex are shown in hexadecimal form, shown by the
appended "h".

The following example shows index and subindex entries for the object
receive PDO4 mapping, 1603 h for identification for the mapping

in R_PDO4.

Index Subindex Object Meaning

1603h 00h Number of elements Number of subindices

1603h 01h 1st mapped object R_PDO4 First object for the mapping in
R_PDO4

1603h 02h 2nd mapped object R_PDO4 Second object for the
mapping in R_PDO4

1603h 03h 3rd mapped object R_PDO4 Third object for the mapping
in R_PDO4

Table 4.1 Examples of index and subindex entries
Communications profile 4-1

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Directory structure The objects in the object directory are sorted by index values.
Table 4.1, page 4-1 shows the index ranges of the object directory in
accordance with the CANopen agreement.

Object descriptions in the
manual

The objects of the following object groups are described differently for
CANopen programming with a compact drive.

• 1xxxh objects: communications objects in this chapter

• 3xxxh objects: manufacturer-specific objects, where required for

controlling the compact drive.

All operating modes and operating functions are controlled by
manufacturer-specific objects. These functions and objects are
described in the relevant device documentation.

Index range
(hex)

Object groups Supported
by drive

0000h Reserved 
0001h-001Fh Static data types 
0020h-003Fh Complex data types 
0040h-005Fh Manufacturer-specific data types 
0060h-007Fh Status data types for the device profiles 
0080h-009Fh Complex data types for the device profiles 
00A0h-0FFFh Reserved 
1000h-1FFFh Communications profile Yes

2000h-5FFFh Manufacturer-specific profiles Yes

6000h-9FFFh Standardised device profiles 
A000h-FFFFh Reserved 

Table 4.2 Index ranges of the object directory
4-2 Communications profile

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
The manufacturer-specific objects are stored from index range 3000h.

To derive the CAN index from the indices given in the device
documentation, it is only necessary to add 3000h.

Fig. 4.1 Object groups

Example:

The control word for status change has the index 28 and the subindex
1 ⇒ in the CAN protocol access to index 301Ch (3000h + 1Ch [= 28d])

and subindex 1.

Overview The communications objects are standardised with the DS-301
CANopen communications profile. The objects can be classified into
four groups according to their tasks.

• PDO (Process Data Objects)

– real-time transmission of process data

• SDO (Service Data Objects)

– write and read access to the object directory

• NMT (Network Management)

– initialisation and monitoring of the network

– error handling in the network

– monitoring of individual network devices

• special objects for controlling CAN messages

– object EMCY (Emergency)
for displaying an error of a device or its peripherals

– object SYNC (Synchronisation)
for synchronisation of network devices

Indices

1…99
3000h+

Manufacturer-specific
objects

3000h …5FFFh

CANopen

=

Parameter list
see controller manual

Communication
objects

1000h …1FFFh
Communications profile 4-3

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
CAN message Data are exchanged on the CAN bus as CAN messages. A CAN
message transmits the communications object and a variety of
management and control information.

Fig. 4.2 CAN message and simplified display of CANopen message

CANopen message The CAN message can be displayed in simplified form for work with
CANopen objects and for data exchange, because most of the bits are
used to ensure error-free data transmission. These bits are
automatically removed from the received messages by the data link
layer of the layer reference model and inserted before a message is
sent.

The two bit fields "Identifier" and "Data" form the simplified CANopen
message. The "Identifier" corresponds to the "COB-ID" and the "Data"
field to the maximum 8-byte data frame size of a CANopen message.

1 11 1 1 1 1 7

End-Bits

AcknowledgeCRCData
Control

RTR-Bit
Identifier

Start-Bit

>=36 160..8 Byte

11 Bit

COB ID Data frame

0..8 Byte

1 2 3 4 5 6 707 Bit4 Bit

CANopen message
simplified

CAN message
4-4 Communications profile

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
COB-ID The COB-ID (communication object identifier) carries out two tasks for
controller communications objects:

• bus arbitration: specification of transmission priorities

• identification of communications objects

Fig. 4.3 COB-ID with function code and node address (node ID)

An 11-bit COB identifier under the CAN 2.0A specification, comprising
two sections, is specified for the compact drive.

• function code, 4 bits in size

• node address (node ID), 7 bits in size

Function code The function code classifies the communications objects. Because the
bits of the function code are significantly higher in the COB-ID, the
function code simultaneously controls the transmission priorities.
Objects with a small function code are transmitted with high priority.
For example, in the case of a simultaneous bus access an object with
the function code "1" is sent before an object with the function code "3".

Node address Every network device is configured before network operation. This
gives it a unique 7-bit long node address between 1 and 127 (7Fh).

The device address "0" is reserved for broadcast transmissions, in
which messages are sent simultaneously to all devices.

1COB ID 2 3 4 1 2 3 4 5 6 7

function-code
0...15

node ID
0...127

Bit:10 0
Communications profile 4-5

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
COB-IDs of the
communications objects

The following table shows the COB-IDs of all communications objects
in the factory setting. The column "Index of object parameters" shows
the index of special objects, with which the communications object
settings can be read or modified by SDO.

Example of the selection of a
COB-ID

For a compact drive with the node address 5 the COB-ID of the
communications objects T_PDO4 is:
1152 + node-ID = 1152 (480h) + 5 = 1157 (485h).

Data frame The data frame of the CANopen message can hold up to 8 bytes of
data. In addition to the data frame for SDOs and PDOs, special data
frame types are specified in the CANopen profile:

• error data frame

• remote data frame for requesting a message

The data frames are described with the relevant communications
objects.

Communications object Function code Node address
(node-id) [1...127]

COB-ID decimal
(hexadecimal)

Index of object
parameters

NMT Start/Stop Service 0 0 0 0 0 0 0 0 0 0 0 0 –

Object SYNC 0 0 0 1 0 0 0 0 0 0 0 128 (80h) 1005h....1007h

Object EMCY 0 0 0 1 x x x x x x x 128 (80h) + node-ID 1014h, 1015h

T_PDO11) 0 0 1 1 x x x x x x x 384 (180h) + node-ID 1800h

R_PDO11) 0 1 0 0 x x x x x x x 512 (200h) + node-ID 1400h

T_PDO21) 0 1 0 1 x x x x x x x 640 (280h) + node-ID 1801h

R_PDO21) 0 1 1 0 x x x x x x x 768 (300h) + node-ID 1401h

T_PDO31) 0 1 1 1 x x x x x x x 896 (380h) + node-ID 1802h

R_PDO31) 1 0 0 0 x x x x x x x 1024 (400h) + node-ID 1402h

T_PDO4 1 0 0 1 x x x x x x x 1152 (480h) + node-ID 1803h

R_PDO4 1 0 1 0 x x x x x x x 1280 (500h) + node-ID 1403h

T_SDO 1 0 1 1 x x x x x x x 1408 (580h) + node-ID –

R_SDO 1 1 0 0 x x x x x x x 1536 (600h) + node-ID –

NMT Error Control 1 1 1 0 x x x x x x x 1792 (700h) + node-ID 100Eh

LMT Services 1) 1 1 1 1 1 1 0 0 1 0 x 2020 (7E4h), 2021 (7E5h)

NMT Identify Service 1) 1 1 1 1 1 1 0 0 1 1 0 2022 (7E6h)

DBT Services 1) 1 1 1 1 1 1 0 0 x x x 2023 (7E7h), 2024 (7F8h)

NMT Services 1) 1 1 1 1 1 1 0 1 0 0 x 2025 (7E9h), 2026 (7EAh)

1) Not supported by the compact drive

Table 4.3 COB-IDs of the communications objects
4-6 Communications profile

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
4.1.2 Communications relationships

CANopen uses three communications relationships for
communications among network devices.

• master-slave

• client-server

• producer-consumer

Master-slave relationship A master device in the network controls the message traffic. A slave
device answers only when requested by the master.

The master-slave relationship is implemented with network
management objects to ensure a controlled network startup and to
monitor the connection of network devices.

Fig. 4.4 Master-slave relationship

Messages can be exchanged unconfirmed or confirmed. When the
master device sends a CANopen message that does not require
response, it can be received by one, by many or by no slave devices.

To have a message confirmed, the master device requests a CANopen
message from the slave, which then answers with the desired data.

Data

Slave

Slave

Slave

Data

Slave

Request

Master

Master
Communications profile 4-7

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Client-server relationship A client-server relationship is always established between two network
devices. The server is the network device whose objects are used
during the exchange of data. The client addresses and starts the
exchange of messages and waits for a confirmation from the server.

A client-server relationship is implemented with SDOs to transmit
configuration data and long CANopen messages.

Fig. 4.5 Client-server relationship

The client addresses and transmits a CAN message to a server. The
server evaluates the message and sends the response data as
confirmation.

Producer-consumer
relationship

The producer-consumer relationship is implemented for exchanging
process data messages, because this relationship allows fast data
exchange without administration data.

A producer sends data, a consumer receives data.

Fig. 4.6 Producer-consumer relationships

Client

Server

Data

Data

Request

Send message

Request message

Data

Data
Consumer

Consumer

Consumer

Consumer

Consumer

Producer

Producer
4-8 Communications profile

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
The producer sends a message that can be received by one or more
consumers. The producer does not receive a receipt confirmation.

A message transmission is triggered by the following events:

• internal event, e.g. "target position reached" message

• SYNC synchronisation object

• by the request of a consumer

For more information on the function of the producer-consumer
relationship and on requesting messages see section 4.3, "Process
data communication (PDO communication)", page 4-15.
Communications profile 4-9

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
4.2 Service data communication (SDO communication)

4.2.1 Overview

SDO communication is based on the client-server relationship.

With SDO (SDO: Service Data Object) the entries of an object
directory are accessed via index and subindex. The object values can
be read and – if permissible – also modified.

Every network device has at least one server SDO to allow it to
respond to read or write requests from another network device. A client
SDO is only required to request SDO messages from the object
directory of another network device or to modify data there.

With the T_SDO (T: to transmit) of a client or server SDO data are
sent, with the R_SDO (R: to receive) they are received. The data
length of an SDO is always 8 bytes.

SDOs have a higher COB-ID than PDOs and therefore are transmitted
at lower priority on the CANopen bus.

4.2.2 SDO data exchange

An SDO transmits parameter data between two network devices. The
data exchange conforms to the client-server relationship. The server is
the network device to whose object directory an SDO message relates.

Fig. 4.7 SDO message exchange with request and response

Client

COB ID Data

COB ID Data

Device

Device

Server

R_SDO

(request)

(response)

CAN

T_SDO

R_SDO T_SDO
4-10 Service data communication (SDO communication)

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Message types The client-server communication is triggered by the client to send
parameter values to the server or to obtain them from the server. In
both cases the client starts the communication with a request and
receives a response from the server.

4.2.3 SDO message

An SDO message simply consists of the COB-ID and the SDO data
frame. Up to 4 bytes of data can be transmitted with the SDO data
frame. Longer data strings are distributed over multiple SDO
messages with a special protocol.

Larger quantities of data, such as 8-byte values of the Visible string 8
data type, must be distributed over several SDOs and transmitted in
sequence in 4-byte blocks.

Fig. 4.8 Example of an SDO message

COB-ID and data frame R_SDO and T_SDO have different COB-IDs, (see table 4.1, page 4-1).
The data frame of an SDO messages has three components:

• Command code (CCD)
The SDO message type and the data length of the transmitted
object value are encrypted in the command code.

• Index and subindex
Point to the SDO whose data are being transported with the SDO
message. In the case of an error the faulty SDO is specified with
index and subindex.

• Data
Can have a length of up to 4 bytes.

Subindex

Index

Command Code

COB ID
(581h)

1 2 3 4 5 6 7
00

0
43 10 00 01 0292 00

581

Data

SDO
Service data communication (SDO communication) 4-11

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Evaluation of numeric values Index and data are transmitted left-aligned in Intel format. If an SDO
contains numerical values over 1 byte in length, the data must be
repositioned byte-by-byte before a transmission (fig. 4.9).

Fig. 4.9 Repositioning numeric values greater than 1 byte

4.2.4 Writing and reading SDO data

Writing object values The client starts a write request by transmitting index, subindex, data
length and data.

If the data have been correctly processed, the server sends a write
response. The response contains the same index and subindex as the
write request but not data.

Fig. 4.10 Writing parameter values

(1) Struck-through bytes are not used; their contents are not defined.

00h 02h 01h 92h10 00h

Index: Data:

Hex value:

1 2 3 4 5 6 7
00

0
43 10 00 01 0292 00

581

1

Client Server

1 2 3 4 5 6 70

COB ID ccd Idx2 Idx1 Sidx Data

1 2 3 4 5 6 70

COB ID ccd Idx2 Idx1 Sidx Data

write request

write response

23h

27h

2Bh

2Fh

60h

ccd=

ccd=

ccd=

ccd=

ccd=

Data

Data

Data

D.
4-12 Service data communication (SDO communication)

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Command code for writing object values

The following table shows the command code for writing object values.
The command code depends on the message type and the transmitted
data length.

Error response

If a message could not be evaluated without error, the server sends an
error response.

Fig. 4.11 Error response, cause of error coded in bytes 4..7 (error code)

For details on evaluating the error response see chapter 7, "Diagnosis
and troubleshooting", section "SDO error message ABORT", page 7-1.

Reading object values The client starts a read request by transmitting index and subindex that
point to the object whose object value the client wants to read.

The server responds to the request with the desired data. The SDO
response contains the same index and subindex. The length of the
response data is specified in the command code.

Message type Data length used Meaning

4 bytes 3 bytes 2 bytes 1 byte

write request 23h 27h 2Bh 2Fh write request

write response 60h 60h 60h 60h write response

error response 80h 80h 80h 80h error

Table 4.4 Command code for writing object values

Client Server

1 2 3 4 5 6 70

COB ID ccd Idx2 Idx1 Sidx Data

error response

80ccd: Byte 4-7
error code
Service data communication (SDO communication) 4-13

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Fig. 4.12 Reading parameter value

(1) Struck-through bytes are not used; their contents are not defined.

Command code for reading object values

The following table shows the command code for reading an object
value. It depends on the message type and the transmitted data
length.

Error response

If a message could not be evaluated without error, the server sends an
error response.

For details on evaluating the error response see chapter 7, "Diagnosis
and troubleshooting", section "SDO error message ABORT", page 7-1.

Message type Data length used Meaning

4 bytes 3 bytes 2 bytes 1 byte

read request 40h 40h 40h 40h read request

read response 43h 47h 4Bh 4Fh read response

error response 80h 80h 80h 80h error response

Table 4.5 Command code for reading object values

1

Client Server

1 2 3 4 5 6 70

COB ID ccd Idx2 Idx1 Sidx Data

1 2 3 4 5 6 70

COB ID ccd Idx2 Idx1 Sidx Data

Data

Data

Data

D.

read request

read response

43h

47h

4Bh

4Fh

40hccd=

ccd=

ccd=

ccd=

ccd=
4-14 Service data communication (SDO communication)

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
4.3 Process data communication (PDO communication)

This chapter describes the information flow from the point of view of
the compact drive in compliance with the CiA standard DS301. The
"receive" label therefore means a data flow from the master to the
compact drive, while "transmit" means a data flow from the compact
drive to the master.

Process Data Objects (PDO) are used for real-time data exchange of
process data such as actual and setpoint position or the operating
state of the compact drive. The transmission can be executed very
fast, because it is sent without additional administration data and does
not require a response from the recipient.

A PDO always is available for sending and receiving a PDO message:

• The T_PDO for sending PDO messages (T: transmit).

• The R_PDO for receiving PDO messages (R: receive).

4.3.1 PDO data exchange

Fig. 4.13 PDO data exchange

Data exchange with PDOs conforms to the producer-consumer
relationship and can be triggered in three ways:

• synchronised

• event-driven, asynchronous

• request by a consumer, asynchronous

PDO Consumer
R_PDO

PDO Consumer
R_PDO

R_PDO
PDO Consumer

T_PDO
PDO Producer

COB ID Data

CAN
Process data communication (PDO communication) 4-15

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
The object SYNC controls the synchronised data processing.
Synchronous PDO messages are transmitted immediately like the
remaining PDO messages, but only evaluated with the next SYNC
object. For example, multiple compact drives can be started
simultaneously by synchnronised data exchange.

PDO messages that are called on request by a consumer or are event-
driven are evaluated immediately by the network device. An
emergency hold information is transmitted asynchronously so the
compact drive can execute an immediate emergency stop.

The transmission type can be configured separately for every PDO via
the subindex 02h (transmission type).

Triggering message
transmissions (trigger modes)

CANopen offers multiple options for transmitting the process data:

Event Driven

The "event" is a modification to the PDO data. The data are sent
immediately in this mode after a modification. Note as an example that
during a positioning the actual position is continuously changing and
that as a result a very large number of PDOs is sent. A large number of
PDOs in such circumstances can be prevented by two methods:

• A) An "inhibit timer" (object 1803h subindex 3) can be configured.
The PDO will then only be transmitted after expiry of the inhibit
period.

• B) The check for modifications (=event) can be restricted with a bit
mask. See the "Bit mask for T_PDO4" section below for a
description.

Another option for "generating" an event is to activate an event timer
(object 1803h subindex 5). This counter is activated by entering a
value unequal to zero. The counter sequence also represents an
event, i.e. the PDO is transmitted on a value change or counter event.

Synchronised

A PDO is transmitted in relation to a SYNC object in this type of
transmission. There is a detailed description in chapter 4.5,
"Synchronisation", page 4-30.
4-16 Process data communication (PDO communication)

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Remotely requested

Transmission of an asynchronous PDO is triggered by reception of an
external request. Such a remote request is displayed by a special bit in
the CAN transmission frame and has the same COB-ID
(communication object identifier) as the requested communications
object.

There is an overview of the various transmission types in the object
directory with the PDO parameters.

Bit mask for T_PDO4 A bit mask over all bits in the T_PDO4 can be defined via the
CAN.pdo4msk1 (30:9) and CAN.pdo4msk2 (30:10) objects. All bit
positions that contain a zero are then no longer taken into account
during checking for a modification (=event). For example, this enables
only modifications to the driveStat information to be taken into account.

Name
Idx:Sub
dec. (hex.)

Meaning
Bit assignment

Data type
Value
range
(dec.)

Unit
Default
(dec.)

R/W/rem.
Info

CAN.pdo4msk1
30:9 (1E:09h)

32-bit mask for process data modification part 1
32-bit mask for event-driven PDO4:

This value allows bytes 1..4 to be unmasked. With event-driven
transmission a message is sent at every modification to the T-PDO data.
Message transmission can specified more precisely or restricted with this
mask. Modifications for event-driven transmission are ignored at all bit
positions at which the mask contains a 0.

Exact assignment:
Bit 31..24: x_end x_err x_info
Bit 23..16: warn Sig_SR FltSig cos
Bit 15..8: modeStat
Bit 7..0: ioSignals

The default value 4294967295 corresponds to 0xFFFFFFFF.

UINT32 -
4294967295

R/W/-

CAN.pdo4msk2
30:10 (1E:0Ah)

32-bit mask for process data modification part 2
32-bit mask for event-driven PDO4:
Mask for bytes 5..8.
For description see object pdo4msk1.

UINT32 -
0

R/W/-

Table 4.6 Parameters for the CAN bus
Process data communication (PDO communication) 4-17

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Example:

In this example setting the object CAN.pdo4msk2 to zero prevents
modifications of the current position from triggering an event.

Fig. 4.14 Setting object CAN.pdo4msk2 to zero

Requesting process data One or more network devices with a consumer function can request
PDO messages from a producer. The producer is identified by the
COB-ID of the request and responds with the requested PDO.

Fig. 4.15 Requesting a message with RTR = 1

The RTR bit of a CAN message is used to detect a request (RTR:
Remote Transmission Request). The COB-ID remains the same for
both messages:
RTR = 0: transmission of data
RTR = 1: requesting data

actual Position
reserved

modeStat
driveStat

21 43 65 87
FFhFFh FFhFFh

00h00h 00h00h

ByteT_PDO4
pdo4msk1
pdo4msk2

RTR

Data

ProducerConsumer

COB ID 0

COB ID 1
4-18 Process data communication (PDO communication)

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Setting RTR request Every PDO can be separately configured for whether it should respond
to RTR requests. The identifier is enabled or disabled via subindex
01, bit 30h of every PDO. The objects required are listed in the

table on page 3-16. Subindex 02h (transmission type) of the objects

specifies the transmission type. Only if the RTR transmission is
enabled for a PDO will the PDO respond to a request via the bit RTR.
The subindex values for using the bit RTR are:

See the object directory for the relevant object for an overview of all
values for the subindex 02h.

The compact drive cannot request a PDO, but it can respond to the
request of a PDO.

Objects 1403h, 1803h
Subindex 02h, transmission type

Meaning

252 RTR enabled, synchronous

253 RTR enabled, asynchronous

Table 4.7 Subindices for using the RTR bit
Process data communication (PDO communication) 4-19

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
4.3.2 Dynamic and static PDO mapping

Dynamic PDO mapping The settings for PDO mapping are defined in an assigned
communications object for every PDO. If the settings for PDO mapping
for a PDO can be modified, this is referred to as dynamic PDO
mapping for the PDO. Dynamic PDO mapping allows flexible
combination of different process data during operation.

Static PDO mapping In static PDO mapping all objects are mapped in accordance with a
fixed, non-modifiable setting in the relevant PDO.

Properties of the
IclA IFx compact drive

The IclA IFx compact drive supports 2 PDOs, the communications
objects T_PDO4 and R_PDO4. PDO4 is enabled for both by default.

These PDOs are statically mapped and so cannot be configured but
only read. The indices for the permanently entered objects can be read
from the PDO mapping object range:

• object 1403h: receive PDO4 communication parameter

• object 1603h: receive PDO4 mapping

• object 1803h: transmit PDO4 communication parameter

• objekt 1A03h: transmit PDO4 mapping
4-20 Process data communication (PDO communication)

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
4.3.3 Receive PDO R_PDO4 (master → compact drive)

The master device can execute the following actions via the PDO4
channel to the compact drive:

• control of the compact drive status machine

– enable or disable power amplifier

– trigger and reset Quick-Stop

– resetting errors

• enable operating modes

– point-to-point mode (absolute and relative)

– speed mode

– reference movement

– dimension setting

• transfer setpoint values

– setpoint position

– setpoint speed

– type of reference movement

Structure of the R_PDO4:

Fig. 4.16 Structure of the R_PDO4

Ref32 -> reference 32 bits - e.g. position
Ref16 -> reference 16 bits - e.g. velocity

modeCtrl
driveCtrl

21 43 65 87Byte

67 45 23 01
00 QR0 QSFR DIEN

Disable
Enable

Quickstop
Fault Reset

Quickstop Release

driveCtrl - 8 Bits

Bit

67 45 23 01
MT ACTION 0 MODE

Requested Mode

Action within Mode

Mode Toggle

modeCtrl - 8 Bits

Bit
Process data communication (PDO communication) 4-21

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Status machine – driveCtrl

The status machine is controlled via PDO4 or the SDO object
driveCtrl, 28:1, in each case via bits 0..4.

In PDO mode these bits operate slope selectively, i.e. the relevant
function is triggered with a "0 → 1" slope.

In the event of access by SDO a write access with a set bit value is
sufficient; i.e. a slope change is not required.

The value "0" is a special case: if all bits 0..7 are zero during
transmission, the compact drive interprets this as a disable command
and the power amplifier is disabled. This is applicable both for PDO
and SDO accesses.

Fault processing

If requests for controlling the status machine by the compact drive
cannot be implemented, the compact drive ignores these requests.
There is no error response.

Operating modes – modeCtrl

In PDO mode the operating modes are controlled via the modeCtrl
object.

The master must enter the following value to trigger an operating mode
or modify setpoint values:

• setpoint values in the fields "Ref16" and "Ref32"

• select mode with modeCtrl, bits 0..2 (MODE)

• select action for this mode with modeCtrl, bits 4..6
(ACTION)

• toggle modeCtrl, bit 7 (MT)

Controlling the
status machine

PDO4
Bits 0...4

SDO object driveCtrl, 28:1
Bits 0...4

Bit 0: disable amplifier Process is run at 0 → 1 slope Processing is run at write access if bit
value =1Bit 1: enable amplifier

Bit 2: Quick-Stop

Bit 3: Fault Reset

Bit 4: Quick-Stop release

Table 4.8 Controlling the status machine
4-22 Process data communication (PDO communication)

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Table 4.1, page 4-1 shows the possible modes and the associated
setpoint values

Setpoint positions are entered in increments, setpoint speeds in
rpm.

In the event of simultaneous transmission of operating mode, setpoint
position and setpoint speed in a PDO data consistency must be
retained. As a result the compact drive only evaluates the operating
mode data if bit 7 has been toggled. Toggling means that since the
last transmission a "0 → 1" or a "1 → 0" slope change was detected.

Bit 7 is mirrored in the response PDO4 by the compact drive, so a
synchronized operation is possible via the PDO4.

For more information see section 4.3.4, "Send PDO T_PDO4 (compact
drive → master)", page 4-24.

Fault processing

Requests for the operating mode are triggered by toggling bit 7. If
the requests cannot be implemented, the compact drive executes an
error response as described in the section Transmit PDO4 error
processing.

For more information see section 4.3.4, "Send PDO T_PDO4 (compact
drive → master)", page 4-24.

Mode bits
0..2

Action
bits 4..6

modeCtrl*
bits 0..6

Description Corres-
ponds to
object**

Setpoint value
Ref16

Setpoint value
Ref32

2 (Homing) 0 02h Dimension setting 40:3 - Dimension
setting position

1 12h Reference movement 40:1 Type (as obj. 40:1) -

3 (PTP) 0 03h Absolute positioning 35:1 Setpoint speed Setpoint
position

1 13h Relative positioning 35:3 Setpoint speed Setpoint
position

2 23h Continuation of positioning 35:4 Setpoint speed -

4 (VEL) 0 04h Speed mode 36:1 Setpoint speed -

* Column corresponds to the value to be entered in byte modeCtrl, but without ModeToggle (bit 7).

** Column shows Index:Subindex (decimal) of the corresponding operating modes, which are described in more detail in
the device documentation.

Table 4.9 Configure operating modes via modeCtrl
Process data communication (PDO communication) 4-23

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
4.3.4 Send PDO T_PDO4 (compact drive → master)

In the default settings of the compact drive the send PDO is sent
asynchronously event-driven; the "inhibit time" setting for the time is
possible.

The compact drive supplies the following information to the master
over the PDO4 channel:

• status of status machine

• errors and warnings

• active operating mode

• status of active operating mode

– mode ended

– fault has occurred

– setpoint speed or setpoint position reached

– actual position

• compact drive referenced

• acknowledgment of operating mode requests

• status of the 24V inputs or outputs

Structure of the T_PDO4:

Fig. 4.17 Structure of the T_PDO4

actual position (pact), 32 bits
ioStat, 8 bits

modeStat, 8 bits
driveStat, 16 bits

21 43 65 87Byte

67 45
MEMT 0ref_ok

23 01
0 mode

actual operation mode

drive referenced

Mode Toggle
Mode Error

modeStat

Bit

driveStat

Bit
x err x_end x_info 0 0 0 0 0 warn Sig_SR FltSig cos0
15 14 13 12 --- 8 7 6 5 3 --- 04
4-24 Process data communication (PDO communication)

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Status word driveStat The information in the status word driveStat corresponds to bits
0..15 of the object Status.driveStat, 28:2.

Contents of information:

• status of status machine

• warning and error bits

• status of the current axis mode.

Mode modeStat This field corresponds to bits 0..2 of the object
Status.xMode_act. Bits 6 and 7 are additional information that
can be used to run a synchronised mode control via the PDO.
Process data communication (PDO communication) 4-25

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
The field contains the following information:

Synchronised processing can be run with R_PDO4, bit 7
(ModeToggle – MTreq) and T_PDO4, bit 6 and 7. Synchronised
processing means that the master device waits for responses from the
compact drive and responds to them.

Example

Positioning with concluding check that it was conducted correctly.

Bit Name Description

0...2 mode Current configured mode as with R_PDO4

5 ref_ok Set when the compact drive has been successfully referenced by reference movement or
setting dimensions.

6 ME, ModeError Set if a request by the master device over R_PDO4 was rejected by the compact drive.

7 MT, ModeToggle Mirrors bit 7 (Mode Toggle) by R_PDO4

Table 4.10 Mode modeStat

Master Compact
drive

Setpoint values for positioning in the fields "Ref16" and "Ref32"
- set the desired mode in the mode field
- toggle bit 7

R_PDO4 ⇒ MTreq ≠ MTstat ⇒

If MT is toggled, then
- import values
- start desired mode
- update status: x_end = 0
- MT mirrored by R_PDO to T_PDO

T_PDO4 ⇐
MTstat = MTreq

x_end = 0
⇐

If MTstat = MTreq then status is current:
- check ME: 1 ⇒ request failed
- to x_end = 1 wait: 1 ⇒ end of positioning

Positioning finished:
x_end = 1

T_PDO4 ⇐
MTstat = MTreq

x_end = 1
⇐

Table 4.11 Example: Positioning with concluding check
4-26 Process data communication (PDO communication)

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Special case much shorter
positioning

In the case of a very short positioning, the compact drive may have
already reached the setpoint position when the status is returned to the
master device via the T_PDO4. In this case R_PDO4, bit 7 is equal
to T_PDO4, bit 7 and bit x_end = 1 is already set. Therefore,
the case x_end = 0 does not apply to the master device. If no error
has occurred, the positioning has still been correctly carried out.

Fault processing If the master device toggles bit 7, this is considered a request to the
compact drive to start a mode or to modify data of the current mode. If
the compact drive cannot process the request, it signals this to the
master by the following actions:

• sends a EMCY with the corresponding error code

• sets T_PDO4, bit 6 (ModeError)
This bit remains set until T_PDO4, bit 7 (ModeToggle) is
toggled again.
The master device can read the corresponding error code by an
SDO read access to object CAN.modeError, 30:11.

• continuation of the current operating mode

The current mode is thus not influenced and there is no status change.

The reasons for a failed mode request can include the following:

• setpoint values outside the value range

• mode cannot be switched during processing

• invalid mode requested

• status machine not in status 6 (Operation Enable)
Process data communication (PDO communication) 4-27

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
4.4 Emergency service

The emergency service reports internal device error over the CAN bus.
The error message is sent to all network devices in accordance with
the consumer-producer relationship with an EMCY object.

Fig. 4.18 Error message with the EMCY object

EMCY message Causes of an EMCY message are:

• asynchronous error, error code = 1000h
If an internal unit error occurs, the compact drive switches to error
mode in accordance with the unit status machine. The compact
drive sends an EMCY message with error register and error code
at the same time.

• PDO4 error with operating mode controller, error code = 8200h
If the request for an operating mode by PDO4 fails, the compact
drive also sends an EMCY message.

• CAN communication error, error code = 8100h

Fig. 4.19 EMCY message

(1) (1) Byte 0, 1("error code"): CANopen error code
This value in the compact drive is 1000h, 8200h or 8100h

depending on the cause of the error.

(2) Byte 2 ("error register"): Error register
The value is also saved in the object Error register, 1001h.

EMCY-Consumer EMCY-Consumer

EMCY-Producer

COB ID

CAN

EMCY-Consumer

Data

Manufacturer specific error field

Error register

Error code Error Field

COB ID (80h+ node ID)

1 2 3 4 5 6 7
10

0
00 01 00 01 000C 00

81

4 5
0C 01

01 0C
4-28 Emergency service

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
(3) Byte 3-7 (Manufacturer Specific Error Field):
Manufacturer-specific error
Byte 3 and bytes 6,7 are always 0.
A manufacturer-specific number is stored in bytes 4,5.
A list of error numbers can found in chapter 7.2 "Error number" of
the controller manual.

COB-ID The COB-ID calculates the following from the node address for every
network device that supports an EMCY object:

COB-ID = function code of the object EMCY, 80h + node-ID
Emergency service 4-29

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
4.5 Synchronisation

The synchronisation object SYNC controls synchronous message
exchange between network devices, e.g. to enable multiple compact
drives to be started.

The data exchange conforms to the producer-consumer relationship.
The synchronisation object SYNC is sent from one network device to all
network devices and can be evaluated by all network devices that
support synchronous PDOs.

Fig. 4.20 SYNC message

4.5.1 Synchronisation periods

2 time values define the behaviour of the synchronous data
transmission:

• the time cycle

• the synchronous time window

Fig. 4.21 Synchronisation periods

SYNC-Consumer SYNC-Consumer

SYNC-Producer

COB ID

CAN

SYNC-Consumer

SYNC

SYNC

Time cycle

Synchronous
time window

T_PDO (status)

R_PDO (controller)

Process
R_PDO data

CAN bus
4-30 Synchronisation

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
The time cycle shows the time gap between two 2 SYNC messages
and is configured with the Communication Cycle Period, 1006h

object.

The synchronous time window apecifies the time gap in which
synchronous PDO messages must be received and sent. The time
window is defined by the object Synchronous Window Length,
1007h.

4.5.2 Synchronous data transmission

From the point of view of a SYNC receiver, in one time window the
status data are sent first in a T_PDO, then new control data are
received via an R_PDO. However, the control data are only processed
when the next SYNC message is received. The synchronisation object
SYNC itself does not carry data.

Cyclic/acyclic Synchronous data transmission can be cyclic or acyclic.

You can specify whether a PDO acts in a cyclic or acyclic manner in
the subindex transmission type, 02h of the PDO parameter.

Fig. 4.22 Cyclic and acyclic transmission

In cyclic transmission PDO messages are exchanged continuously in a
specified cycle, e.g. with every SYNC message.

If a synchronous PDO message is transmitted acyclically, the PDO
message can be sent or received at any time. However, the PDO
message will only be valid with the next SYNC message.

COB-ID To ensure fast transmission of the SYNC synchronisation object, it is
transmitted unconfirmed and at high priority. The COB-ID of the SYNC
synchronisation object is always 128 (80h) for the compact drive.

T_PDO: cyclic

T_PDO: acyclic

SYNC
Synchronisation 4-31

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
4.6 Network management objects

Network management (NMT) is a component of the CANopen
communication profile.

NMT is used for the following tasks:

• connection monitoring

– network initialisation

– network monitoring

• monitoring network devices

– initialisation

– starting

– stopping

– status

NMT is implemented as a master-slave relationship. The NMT master
device addresses individual NMT slave devices by their node address.

A message with node address "0" is addressed to all NMT slaves
simultaneously.

Fig. 4.23 NMT over the master-slave relationship

The compact drive can only take on the role of an NMT slave.

NMT-
Slave

NMT-
Slave

NMT-
Slave

NMT-
Slave

NMT-
Slave

NMT-
Master

CAN

COB ID Data
4-32 Network management objects

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
4.6.1 NMT services for controlling the compact drive

NMT status machine The NMT status machine describes the behaviour of a compact drive
in network operation:

• initialisation

• operating states

Fig. 4.24 NMT status machine

A Start Remote Node

B Stop Remote Node

C Enter Pre-Operational

D Reset Node

E Reset Communication

Initialising compact drive After switching on the power supply, the compact drive automatically
runs an initialisation phase that prepares it for CANopen operation.

During the initialisation phase the compact drive loads the non-volatile
object data into RAM from the EEPROM.

At the end of the initialisation phase the compact drive switches to the
Pre-operational operating status and sends the Boot Up message.

From this point an NMT master device can control the mode behaviour
of a compact drive in the network with the five NMT services.

Operational

Pre-Operational

Stopped

Reset
Application

Reset
Communication

Initialization

Power on

C
A

D
E

B
NMT

SDO, EMCY
NMT

PDO, SDO, SYNC
EMCY, NMT
Network management objects 4-33

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
NMT services

Transmission priority The NMT services for controlling the compact drive are transmitted as
messages not requiring confirmation with the COB-ID = 0. By default
they receive top priority on the CAN bus.

Data frame The data frame of an NMT messages consists of two bytes.

Fig. 4.25 Data frame of an NMT message

Byte 0 (Command Specifier) specifies the NMT service in use.

NMT service Transition Meaning

Start Remote Mode A Switch to Operational operating status.
Start standard network operation to all network
devices.

Stop Remote Node B Switch to Stopped operating status stop compact
drive communication. If connection monitoring is
active, it remains switched on.

Enter Pre-Operational C Switch to Pre-Operational operating status.
All communications objects can be set except for
PDOs. The Pre-Operational operating status can
be used for configuration by SDOs:
- PDO mapping
- start synchronisation
- start connection monitoring

Reset Node D Switch to Reset Application operating status.
Load stored device profile data and switch
automatically to Pre-Operational via Reset
Communication operating status

Reset
Communication

E Switch to Reset Communication operating status.
Load stored communication profile data and
switch automatically to Pre-Operational operating
status.

Table 4.12 NMT services for controlling the compact drive

NMT-
Slave

NMT-
Slave

NMT-
Slave

NMT-
Master 00010

Command specifierCOB ID

node ID

Byte 0 1
4-34 Network management objects

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Byte 1 addresses the recipient of the NMT message with a node
address between "1" (1h) and "127" (7Fh). A message with node

address "0" (0h) is directed to all NMT slaves (broadcast).

4.6.2 NMT services for connection monitoring

Connection monitoring monitors the communication status of network
devices, enabling a response to the failure of a network device or a
break in the network.

Connection monitoring must be disabled during the initialisation phase
of a compact drive.

Monitoring node One NMT service is available for the compact drive for monitoring the
compact drive connection.

During connection monitoring with the Node guarding NMT service, the
NMT master device requests an NMT status message from the
compact drive at regular intervals. The status message must be sent
by the compact drive within the time interval. The time interval is
configured with the Guard Time, 100Ch object.

If the NMT status message is not received by the NMT master device
within the time interval, the NMT master device reports the connection
error error.

Command Specifier NMT service Transition

1 (01h) Start remote node A

2 (02h) Stop remote node B

128 (80h) Switch to Pre-Operational C

129 (81h) Reset remote node D

130 (82h) Reset communication data E

Table 4.13 Byte 0 (Command Specifier) of the NMT data frame

NMT service Meaning

Monitoring node
(Node guarding)

Monitoring a compact drive connection

Table 4.14 NMT services for connection monitoring
Network management objects 4-35

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Fig. 4.26 Node guarding with time intervals and error message

The NMT master device also sends the connection error message if
the compact drive operating status has changed without being initiated
by the NMT master device.

COB-ID Connection monitoring is executed via the NMT error control,
700h + node-Id object.

Data frame The compact drive responds with a data byte on request by the NMT
master device.

Fig. 4.27 Data frame of a compact drive NMT response

SlaveMaster
Guard
time

Request

Response

Response

Request

Request

Missing
response

Message

SlaveMaster
05h

05h

COB ID

RTR

RTR

RTR

704h

704h

node ID=04h

704h

704h 85h

704h

704h 05h

Guard
time

Bit 7 6 ... 0

00 0 0 0 0 11

Bit 7 6 0
85h 0 0 0 0 01 11= =
4-36 Network management objects

IFX-CANopen DS301 CANopen communication
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Bits 0 … 6

The bits 0.. 6 contain the current operating status of the compact
drive:

• value = 4 (04h)

operating status Stopped

• value = 5 (05h)

operating status Operational

• value = 127 (7Fh)

operating status Pre-Operational

Bit 7

Bit 7 switches between "0" and "1" on every response. The NMT
master device detects when a response has been seen multiple times
by bit 7. The NMT master device only considers the first response.

The first request when starting connection monitoring begins with
bit 7 = 0.

The status of bit 7 is reset as soon as the compact drive runs through
the NMT operating status reset communication.

Connection monitoring continues in NMT operating status stopped.

Boot Up message Communication profile DS301, version 4.0 defines an additional task
for the NMT services: sending a boot-up message.

A network device informs all other network devices that it is ready for
operation with a boot-up message.

A boot-up message consists of the COB-ID of the NMT Error
Control object and is sent without data. Standard setting of the
COB-ID is 1792 (700h) + node-ID
Network management objects 4-37

CANopen communication IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
4-38 Network management objects

IFX-CANopen DS301 Installation and setup
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
5 Installation and setup

5.1 Installation

For information about installation, refer to the controller manual,
"Installation" chapter.

Compact drives with
DIP switches

Before installing the compact drive in the system, you must set the
network address and the baud rate via the DIP switches in the plug
housing.

For information about DIP switch settings, refer to the the controller
manual, "Installation" chapter.

5.2 Commissioning field bus connection

5.2.1 Starting field bus operation

Configuration with SyCon Instructions for using the Hilsch SyCon configuration software:

In the Node Configuration do not change the Unit Profile
setting (value= 0)!

If this value is changed, communication with the drive will no longer
function. However, the setting cannot be reset to the original status.

Proceed as follows to restore communication with the IclA IFX drive:

� Click Node BootUp button in the Node Configuration dialog.

� Click Check Node Type and Profile in the Node BootUp
dialog to bypass this step.

Testing field bus operation After correct configuration of the transmission data test the field bus
operation.

This requires installation of a CAN configuration tool that displays CAN
messages. The acknowledgment from the drive is captured by a boot-
up message:

� Switch the drive power supply off and on again.

� Observe the network messages shortly after switching on the unit.
The positioning controller sends a 1-byte-long boot-up message
after initialization of the bus: 128 (80h)+node-Id.

With node address factory-set to 127 (7Fh) the boot-up message 255

(FFh) is sent over the bus. The drive can then be put into operation via

NMT services.
Installation 5-1

Installation and setup IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
5.2.2 Troubleshooting

If the compact drive does not respond, check the following settings:

� Has the compact drive been started and the master device
switched on?

� Are the cable connections mechanically and electrically sound?

� Is the address on the compact drive correctly set? Check the DIP
switch and HEX switch settings. The settings are described in the
manual for the unit. Compact drives with DIP switches are set by
default to the CAN address "127" (7Fh) and the baud rate "125

kBit/s".

� Are the same baud rate and the same interface parameters set on
the master device and compact drive?

If the compact drive still does not respond:

� Open the plug cover.

� If the compact drive is functioning correctly with the power
amplifier off, the LED in the plug housing flashes constantly at
0.5 Hz (1 second on, 1 second off). If this is not the case, the
compact drive has an operational error. See the controller manual
for information on causes of errors and troubleshooting.

� Compare the LED display with the information in the following
table.

Refer to the controller manual for further information on the causes of
errors and troubleshooting.

Error Error class Cause of error Troubleshooting

LED off – No power supply. Check power supply and fuses.

LED flashes at 0.5 Hz.
(1 s on, 1 s off)

– Firmware works without errors,
power amplifier inactive.

Check cable connections. Check
DIP switch settings.

LED flashes at 6 Hz. 4 Flash checksum wrong. Reinstall firmware.
Replace compact drive.

LED flashes at 10 Hz.
Watchdog

4 Hardware error Switch compact drive off and on
again.
Replace compact drive.
5-2 Commissioning field bus connection

IFX-CANopen DS301 Examples for field bus operation
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
6 Examples for field bus operation

6.1 Overview

The program examples show practical applications for network
operation of IFx compact drives. There are generally two access
methods over the CANopen field bus: SDO (Service Data Objects) and
PDO (Process Data Objects).

Using SDO An SDO access is always a write or read access to one single object.
The available objects are described in the controller manual and is also
summarized there as a table in chapter 9, "Parameters". The use of
SDO is described in this chapter with the examples of only a few
objects, because this type of communication can be used for all
available user objects and is always structured very similarly.

Using PDO PDOs are recommended for positioning mode, because the
information here is transferred much more effectively. Various practical
examples are given for the application of PDO4, which is supported by
the compact drive, and the general procedure is described.

• The PDO from the "master device" to the compact drive is labeled
"R_PDO".

• The PDO from the compact drive to the "master device" is labeled
"T_PDO".

Structure of the examples When describing the PDOs, note that they are described from the point
of view of the compact drive.

The following is shown:

• description of task

• initial conditions

• commands required in transmitted data frame

• response of compact drive in received data frame

• possible limitations on command execution
Overview 6-1

Examples for field bus operation IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
You should be aware of the following to be able to reproduce the
examples:

• operating concept and functional scope of the compact drive
You will find information on this in the manual.

• field bus protocol and connection to the master controller

• functional scope of the field bus profile

Manual The examples are designed to complement the function descriptions in
the manuals. The manual describes the basic functions of the
operating modes and functions.

You will also find all parameters regarding the operating modes and
functions listed there.

The number format of the parameter values in a field bus command is
described in table 9.2, page 9-1 of the controller manual.
6-2 Overview

IFX-CANopen DS301 Examples for field bus operation
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
6.2 Using SDO commands

6.2.1 Writing parameters

Task The parameter (Motion.acc, 29:26 (acceleration)) must be set to
the value "10,000".

Index and subindex must be converted to hexadecimal and the
constant 3000h added to the index for the SDO access:

• index: 29 = 1Dh + 3000h = 301Dh

• subindex: 26 = 1Ah

• value: 10000 = 00002710h

The value 23h must be entered as CCD (Client Command Identifier),

because the parameter has a 32-bit data type.

Transmitted data

The data type of the value to be written can be taken from the "data
type" column in the parameter description of the controller manual.
With the CAN protocol in use, 16-bit values and 32-bit values are
transferred in the format "lowest value bit first – highest value bit last".
The CCD corresponding to the data type must be entered when
transferring an INT16 or UINT16 value. The value must be stored in
the first two data bytes and the last two data bytes must be described
with "0".

Received data

Object COB-ID CCD Idx Sdx Data Description

Tx 301Dh:1Ah Motion.acc 600h+ID 23h 1Dh 30h 1Ah 10h 27h 00 00 Setting the acceleration to 10000
rpm*s = 2710h as 32-bit value

Object COB-ID CCD Idx Sdx Data Description

Rx 301Dh:1Ah Motion.acc 580h+ID 60h 1Dh 30h 1Ah XX XX XX XX The response data are
meaningless.
Using SDO commands 6-3

Examples for field bus operation IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
6.2.2 Read parameter

Task The parameter Status.n_act, 31:9 (actual speed) must be read.

Index and subindex must be converted to hexadecimal and the
constant 3000h added to the index for the SDO access:

• index: 31 = 1Fh + 3000h = 301Fh

• subindex 9 = 09h

The value "40h" must be entered as CCD. This identifies a read

request.

Transmitted data

The 4 data bytes are meaningless for a read request.

Received data

The compact drive transmits data continuously back to the master
device as 32-bit values (CCD is "43h"). It also returns data described in

the controller manual as INT16 or UINT16 data types as 32-bit values.
Therefore, when reading an INT16 or UINT16 value all 4 data bytes
can be evaluated. However, for 16-bit data it is also correct to evaluate
only the first two data bytes and to ignore the last two data bytes.

Object COB-ID CCD Idx Sdx Data Description

Tx 301Fh:09h
Status.n_actT

600h+ID 40h 1Fh 30h 09h XX XX XX XX Reading the actual speed. The
data are meaningless.

Object COB-ID CCD Idx Sdx Data Description

Rx 301Dh:09h
Status.n_act

580h+ID 43h 1Fh 30h 09h E8 03 00 00 The data 000003E8 correspond to
1000 rpm.
6-4 Using SDO commands

IFX-CANopen DS301 Examples for field bus operation
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
6.2.3 Synchronous errors

If an SDO write or read command fails, the compact drive responds
with an error data frame (error response). For example, an error
source can be trying to read or write a non-existent object. The
transmitted error number shows information on the exact cause.

Receive data with error data frame (error response)

The example shows the response to a write or read request for a non-
existent object 40:32.

The error number of a synchronous error message is stored as a
UINT16 value and the value "80h" is transferred to the corresponding

CCD (error response). The table of error numbers can be found in
chapter 7.2.1, "Synchronous errors".

Object COB-ID CCD Index Sub Data Description

Rx 3028h:20h 580h+ID 80h 28h 30h 20h 00 00 02 06 Error number 06020000h means
"object not in object directory"
Using SDO commands 6-5

Examples for field bus operation IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
6.3 Changing operating states with PDO4

The compact drive detects different operating states. The different
operating states are numbered from 1 to 9. The operating states and
the transition conditions are described in more detail in the controller
manual, "Operation/Basics" chapter.

Table 6.1, page 6-6 shows the most important operating states:

Requests for switching operating states are transmitted to the compact
drive in R_PDO4 in the driveCtrl field. It reports the current
operating state back to the master device in T_PDO4, driveStat field.

Table 6.2, page 6-6 shows the bit assignment of the driveCtrl field
in the R_PDO4 object:

6.3.1 Switch power amplifier on and off

The power amplifier is switched on by the transition from operating
state 4 to 6. To do this R_PDO4 contains the two bits Enable and
Disable. One must always be set to "1" and the other to "0".

Operating
state

Name Power
amplifier

Description

4 Ready To Switch On off passive operating state,
motor without power

6 Operation Enable on active operating state, motor
under power

7 Quick-Stop Active on error state, power amplifier
remains on

9 Fault off error state, power amplifier
switched off

Table 6.1 Important operating states

Bit no. Pulse value Meaning

0 01h Disable

1 02h Enable

2 04h Quick-Stop

3 08h FaultReset

4 10h Quick-Stop release

Table 6.2 R_PDO4, driveCtrl, bit assignment
6-6 Changing operating states with PDO4

IFX-CANopen DS301 Examples for field bus operation
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Switching on the power amplifier Condition: Compact drive is in operating state 4.

To switch on the power amplifier, a "0 → 1" slope must be generated in
driveCtrl, bit 1 (Enable). This can be run by clearing bit 0
(Disable) and setting bit 1. The master device waits until the
compact drive reports operating state 6. This may take some time
(approx. 1 second), because various tests are run when the power
amplifier in the compact drive is switched on.

Example

Switching off the power
amplifier

Condition: Compact drive is in operating state 6 or 7.

To switch off the power amplifier, a "0 → 1" slope must be generated in
driveCtrl, bit 0 (Disable). This can be run by setting bit 0
(Disable) and clearing bit 1 (Enable). The compact drive then
switches to operating state 4.

Example

Master Compact
drive

Disable is requested
R_PDO4

driveCtrl
01h

Compact drive reports
operating state 4 T_PDO4

driveStat
XXX4h

Request Enable
R_PDO4

driveCtrl
02h

Compact drive reports
operating state 5 T_PDO4

driveStat
XXX5h

Compact drive reports
operating state 6 T_PDO4

driveStat
XXX6h

Table 6.3 Switching on the power amplifier

Master Compact
drive

Enable is requested
R_PDO4

driveCtrl
02h

Compact drive reports
operating state 6 T_PDO4

driveStat
XXX6h

Request Disable
R_PDO4

driveCtrl
01h

Compact drive reports
operating state 4 T_PDO4

driveStat
XXX4h

Table 6.4 Switching off the power amplifier
Changing operating states with PDO4 6-7

Examples for field bus operation IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
6.3.2 Triggering Quick-Stop

A current movement job can be interrupted over the field bus at any
time with the Quick-Stop command. It is triggered by a
"0 → 1" slope in driveCtrl, bit 2. The compact drive brakes at
the specified emergency stop ramp by switching to operating state 7
(Quick-Stop) and comes to a standstill.

The compact drive must be placed in operating state 6 to start a new
movement job. Run one of the following steps to do this:

• Fault Reset
"0 → 1" slope in driveCtrl, bit 3

• Quick Stop Release
"0 → 1" slope in driveCtrl, bit 4

Example:

Master Compact
drive

Enable is requested
R_PDO4

driveCtrl
02h

Compact drive reports
operating state 6 T_PDO4

driveStat
XXX6h

Requesting Quick-Stop and
Enable R_PDO4

driveCtrl
06h

Compact drive reports
operating state 7 T_PDO4

driveStat
XXX7h

Wait until compact drive
stops and system must
continue

Requesting Quick-Stop
Release and Enable R_PDO4

driveCtrl
12h

Compact drive reports
operating state 6 T_PDO4

driveStat
XXX6h

Resetting Quick Stop
Release R_PDO4

driveCtrl
02h

Table 6.5 Triggering Quick-Stop
6-8 Changing operating states with PDO4

IFX-CANopen DS301 Examples for field bus operation
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
6.3.3 Resetting errors

If an error occurs during operation, the compact drive switches to
operating state 7 (Quick-Stop) or operating state 9 (Fault) depending
on the error that has occurred.

After correction of the error, you can reset the error status by running a
Fault Reset ("0 → 1" slope in driveCtrl, bit 3).

If the compact drive was originally in operating state 7, it will switch to
operating state 6 after the Fault Reset.

If the compact drive was originally in operating state 9, it will switch to
operating state 4 after the Fault Reset. Then you must send a "0 → 1"
slope in driveCtrl, bit 1 (Enable) to switch on the power
amplifier again.

Example:

Note: In this example the master device clears the bit 1 (Enable)
during the Fault Reset to be able to run an implicit "0 → 1" slope at
bit 1. This returns the compact drive to operating state 6.

Master Compact
drive

Request Enable
R_PDO4

driveCtrl
02h

Compact drive reports
operating state 9 (Fault) T_PDO4

driveStat
XXX9h

Correcting error

Requesting Fault Reset
R_PDO4

driveCtrl
08h

Compact drive reports
operating state 4 T_PDO4

driveStat
XXX4h

Request Enable
R_PDO4

driveCtrl
02h

Compact drive reports
operating state 5 T_PDO4

driveStat
XXX5h

Compact drive reports
operating state 6 T_PDO4

driveStatXX
XX6h

Table 6.6 Resetting errors
Changing operating states with PDO4 6-9

Examples for field bus operation IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
6.4 Examples for the operating states with PDO4

R_PDO4 You can start movement commands and change them during
processing with the R_PDO4.

The R_PDO4 offers three fields for use:

• modeCtrl
start and change operating mode

• Ref16 and Ref32
mode-independent default values

The default values of these three fields are only imported by the
compact drive if modeCtrl, bit 7 (ModeToggle) has been
switched.

Always proceed as follows to transfer values to the compact drive:

� Enter the desired mode and the associated default values in the
modeCtrl, Ref16 or Ref32 fields.

� Switch modeCtrl, bit 7 (ModeToggle)

This is a safe way of always avoiding consistency problems within the
R_PDO4.

T_PDO4 You monitor movement jobs with the T_PDO4.

The T_PDO4 offers three fields for use:

• modeStat
for handshake purposes

• driveStat
reports movement status and errors

• p_act
actual position of the compact drive

ModeToggle The bit ModeToggle is in the R_PDO4 and the T_PDO4. The master
device sets this bit in the R_PDO4 and the compact drive mirrors it in
the T_PDO4. The procedure enables the master device to detect
whether the data sent by the compact drive are current.
6-10 Examples for the operating states with PDO4

IFX-CANopen DS301 Examples for field bus operation
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Example

The master device starts a positioning movement that will only take a
very short time. The master device waits for the end of the positioning
movement by checking T_PDO4 for bit x_end = 1 (identifies
positioning end).

The master device may receive data from the compact drive that
originate from the period before the start of the positioning movement.
They also contain x_end = 1. The master now detects that these
data are old, because the ModeToggle bit does not match that of the
positioning job.

In general, the master device should only evaluate data in which the
receive bit ModeToggle is identical with that which it sent last.

Acceleration Before a positioning movement you can first set the desired
acceleration with an SDO access (Motion.acc, 29:26 object). Note
that the acceleration can only be changed when the compact drive is at
a standstill.

Assumptions The examples in this chapter are based on the following assumptions:

• operating state 6 (Operation Enable)

• compact drive has not yet been referenced (bit ref_ok = 0)

• p_act = 0 (actual position)

• R_PDO4: modeCtrl, bit 7 = 0 (ModeToggle)

6.4.1 Point-to-point mode – absolute positioning

To start an absolute positioning movement the following setting must
be made in the R_PDO4:

� Enter the setpoint speed in Ref16 and the target position in
Ref32.

� Enter mode 03h (point-to-point mode, absolute positioning) in the

field modeCtrl.

� Switch modeCtrl, bit 7 so the data from the compact drive
are imported.
Examples for the operating states with PDO4 6-11

Examples for field bus operation IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Example 1:

Absolute positioning to position "100,000" (000186A0h)

at a setpoint speed of 1000 rpm (03E8h)

Note: The "positioning running" data frame can be sent multiple times;
the current actual position is in the p_act field.

Example 2

As in example 1, except that the setpoint speed is changed to
2000 rpm (07D0h) during the movement.

Note: The data frame "positioning running" can also be sent multiple
times. The actual position is in the p_act field. When the setpoint
speed is changed the same target position is sent, because this does
not change in this example.

Master Compact
drive

Trigger positioning R_PDO4 driveCtrl
02h

modeCtrl
83h

Ref16
03E8h

Ref32
000186A0h

Positioning running
x_err = 0, x_end = 0

T_PDO4 driveStat
0006h

modeStat
83h

p_act
XXXXXXXXh

Positioning finished
x_err = 0, x_end = 1, x_info = 1

T_PDO4 driveStat
6006h

modeStat
83h

p_act
000186A0h

Table 6.7 Point-to-point mode, absolute positioning at constant setpoint speed

Master Compact
drive

Trigger positioning R_PDO4 driveCtrl
02h

modeCtrl
83h

Ref16
03E8h

Ref32
000186A0h

Positioning running
x_err = 0, x_end = 0

T_PDO4 driveStat
0006h

modeStat
83h

p_act
XXXXXXXXh

Change setpoint speed R_PDO4 driveCtrl
02h

modeCtrl
03h

Ref16
07D0h

Ref32
000186A0h

Positioning running
x_err = 0, x_end = 0

T_PDO4 driveStat
0006h

modeStat
03h

p_act
XXXXXXXXh

Positioning finished xerr=0,
 x_end = 1, x_info = 1

T_PDO4 driveStat
6006h

modeStat
03h

p_act
000186A0h

Table 6.8 Point-to-point mode, absolute positioning with change of setpoint speed
6-12 Examples for the operating states with PDO4

IFX-CANopen DS301 Examples for field bus operation
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
6.4.2 Point-to-point mode – relative positioning

A relative positioning is conducted similarly to the absolute positioning.
You only need to enter the value "13h" (point-to-point mode, relative

positioning) in the modeCtrl field. It is also important to ensure that
multiple target positions transferred in succession are added.

Example:

Relative positioning by 100,000 (000186A0h) increments at a speed of

1000 rpm (03E8h)

The speed is changed to 2000 rpm (07D0h) during the movement.

Comments: The "positioning running" data frame can be sent multiple
times; the actual position is in the p_act field. When the setpoint
speed is changed, the value "0" must be sent as the new target
position, because the new value is added to the previously calculated
target position.

Master Compact
drive

Trigger positioning R_PDO4 driveCtrl
02h

modeCtrl
93h

Ref16
03E8h

Ref32
000186A0h

Positioning running
x_err = 0, x_end = 0

T_PDO4 driveStat
0006h

modeStat
83h

p_act
XXXXXXXXh

Change setpoint speed transfer
relative position "0"

R_PDO4 driveCtrl
02h

modeCtrl
13h

Ref16
07D0h

Ref32
00000000h

Positioning running
x_err = 0, x_end = 0

T_PDO4 driveStat
0006h

modeStat
03h

p_act
XXXXXXXXh

Positioning finished
x_err = 0, x_end = 1, x_info = 1

T_PDO4 driveStat
6006h

modeStat
03h

p_act
000186A0h

Table 6.9 Point-to-point mode, relative positioning with change of setpoint speed
Examples for the operating states with PDO4 6-13

Examples for field bus operation IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
6.4.3 Speed mode

In speed mode a setpoint speed is specified for the motor, and a
movement is initiated with no defined finishing point.

You must make the following settings in the R_PDO4 to start Speed
mode or to change the setpoint speed while speed mode is running:

� Enter the setpoint speed in Ref16 (Ref32 is meaningless here).

� Enter operating mode 04h (Speed Mode) in modeCtrl.

� Switch modeCtrl, bit 7 so the data are imported from the
compact drive.

Example

Speed mode is started at a setpoint speed of 1000 rpm (03E8h).

The setpoint speed is changed to 2000 rpm (07D0h) during the

movement.

Speed mode is ended by sending the setpoint speed "0" and then wait
for the compact drive to come to a standstill.

Note: The current position of the drive in increments is in the p_act
field of the T_PDO4.

Master Compact
drive

Start speed mode at 1000 rpm
R_PDO4

driveCtrl
02h

modeCtrl
84h

Ref16
03E8h

Ref32
XXXXXXXXh

Compact drive accelerates
xerr=0, xend=0, xinfo=0 T_PDO4

driveStat
0006h

modeStat
84h

p_act
XXXXXXXXh

Setpoint speed reached xerr=0,
xend=0, xinfo=1 T_PDO4

driveStat
2006h

modeStat
84h

p_act
XXXXXXXXh

Change speed to 2000 rpm
R_PDO4

driveCtrl
02h

modeCtrl
04h

Ref16
07D0h

Ref32
XXXXXXXXh

Compact drive accelerates
xerr=0, xend=0, xinfo=0 T_PDO4

driveStat
0006h

modeStat
04h

p_act
XXXXXXXXh

Setpoint speed reached xerr=0,
xend=0, xinfo=1 T_PDO4

driveStat
2006h

modeStat
04h

p_act
XXXXXXXXh

Change speed to 0 rpm
R_PDO4

driveCtrl
02h

modeCtrl
84h

Ref16
0000h

Ref32
XXXXXXXXh

Compact drive decelerates
xerr=0, xend=0, xinfo=0 T_PDO4

driveStat
0006h

modeStat
84h

p_act
XXXXXXXXh

Speed mode finished xerr=0,
xend=1, xinfo=1 T_PDO4

driveStat
6006h

modeStat
84h

p_act
XXXXXXXXh

Table 6.10
6-14 Examples for the operating states with PDO4

IFX-CANopen DS301 Examples for field bus operation
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
6.4.4 Dimension setting

During dimension setting a new position is assigned to the current
motor position. This only moves the coordinate system, the motor does
not move.

You must make the following settings for dimension settings in the
R_PDO4:

1. Enter the new position in Ref32 (Ref16 is meaningless here).

2. Enter operating mode 02h (referencing, dimension setting) in

modeCtrl.

3. Switch modeCtrl, bit 7 so the data from the compact drive
are imported.

Example: The motor stops at position "-100,000" (FFFE7960h).

The motor is assigned the position "200,000" (00030D40h).

Master
Compact

drive

Compact drive reports position
-100,000 T_PDO4

driveStat
XXXXh

modeStat
XXh

p_act
FFFE7960h

Dimension setting to
200,000 R_PDO4

driveCtrl
02h

modeCtrl
82h

Ref16
XXXXh

Ref32
00030D40h

Position imported
x_err = 0, x_end = 1, x_info = 0 T_PDO4

driveStat
4006h

modeStat
A2h

p_act
00030D40h

Table 6.11 Dimension setting
Examples for the operating states with PDO4 6-15

Examples for field bus operation IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
6.4.5 Reference movement

During the reference movement a limit or reference switch is
approached and then a new value is assigned to this position.

Before starting a reference movement the parameters must be set
appropriately to the requests by SDO write accesses. See the
controller manual for more information on setting parameters and on
running a reference movement.

To start an reference movement the following settings must be made in
the R_PDO4:

1. Enter the type of reference movement in Ref16 (Ref32 is
meaningless here).
The types of reference movement are described in the controller
manual.

2. Enter operating mode 12h (Referencing, Reference movement) in

modeCtrl.

3. Switch modeCtrl, bit 7 so the data from the compact drive
are imported.

Example

A reference movement must be run to the negative limit switch (LIMN);
this is reference movement type 2.

Master
Compact

drive

Trigger reference movement
R_PDO4

driveCtrl
02h

modeCtrl
92h

Ref16
0002h

Ref32
XXXXXXXXh

Reference movement running
xerr=0, xend=0 T_PDO4

driveStat
0006h

modeStat8
2h

p_act
XXXXXXXXh

Referencing movement complete
xerr=0, xend=1 T_PDO4

driveStat
4006h

modeStat
A2h

p_act
00000000h

Table 6.12 Reference movement
6-16 Examples for the operating states with PDO4

IFX-CANopen DS301 Examples for field bus operation
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
6.5 Error signalling via PDO4

6.5.1 Synchronous errors

If a request for an operating mode sent by the compact drive via
R_PDO4 cannot be processed, the compact drive rejects the
processing and sets in the T_PDO4 modeStat, bit 6 (ModeError).
This does not interrupt the current process. The master device can
now read out the error number from the object CAN.modeError,
30:11 with an SDO access to determine the cause of the error.

Example

The compact drive rotates in speed mode.
An attempt is made to run a dimension setting.

Note: If a request for dimension setting is rejected, the compact drive
continues to rotate in speed mode without change.

However, the compact drive sends an EMCY message to the master
device with the corresponding error number.

Master
Compact

drive

Speed mode
x_end = 0 T_PDO4

driveStat
0006h

modeStat
04h

p_act
XXXXXXXXh

Request:
Dimension setting to 0 R_PDO4

driveCtrl
02h

modeCtrl
82h

Ref16
XXXXh

Ref32
00000000h

Request rejected
ModeError = 1 T_PDO4

driveStat
0006h

modeStat
C4h

p_act
XXXXXXXXh

Table 6.13 Synchronous error, Invalid request of an operating mode
Error signalling via PDO4 6-17

Examples for field bus operation IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
6.5.2 Asynchronous errors

Asynchronous errors are triggered by the internal monitoring (e.g.
temperature) or by the external monitoring (e.g. limit switch). If an
asynchronous error occurs the compact drive responds by braking or
by switching off the power amplifier.

Asynchronous errors are displayed as follows:

• Switch to operating state 7 (Quick-Stop) or operating state 9
(Fault).
The switch is displayed in T_PDO4, driveStat, bits 0..3.

• Set driveStat, bit 5 (fault by internal monitoring) or
driveStat, bit 6 (fault by external monitoring)

• In the event of a fault message by the internal monitoring:
Set the bit corresponding to the fault in the Status.FltSig_SR,
28:18 object
In the event of a fault message by the external monitoring:
Set the bit corresponding to the fault in the Status.Sign_SR,
28:15 object that the bit corresponding to the fault is set

• An error number is also assigned to every error. In the case of an
asynchronous error the corresponding error number can be read
from the object Status.StopFault (32:7).

Example: Fault message triggered by the external monitoring; approach the
positive limit switch LIMP.

Note: When a limit switch is detected, the motor brakes to a standstill
with the emrgency stop ramp and the bit x_err is set. After the motor
is at a standstill bit x_end is set.

Master
Compact

drive

Positioning running xerr=0,
xend=0 T_PDO4

driveStat
0006h

modeStat
03h

p_act
XXXXXXXXh

Limit switch detected xerr=1,
xend=0 T_PDO4

driveStat
8047h

modeStat
03h

p_act
XXXXXXXXh

Motor stopped
xerr=1, xend=1 T_PDO4

driveStat
C047h

modeStat
03h

p_act
XXXXXXXXh

Table 6.14 Asynchronous error, triggering an external
6-18 Error signalling via PDO4

IFX-CANopen DS301 Diagnosis and troubleshooting
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
7 Diagnosis and troubleshooting

7.1 Field bus communication error diagnosis

For more information on troubleshooting see see chapter 5.2.2,
„Troubleshooting“, page 5-2.

7.2 Error messages

The master device receives error messages over the field bus during
network operation.

The following error messages are possible:

• synchronous errors

• asynchronous errors

• errors during mode type control via PDO

7.2.1 Synchronous errors

If an SDO command cannot be processed by the compact drive, the
master device receives a synchronous error message directly from the
compact drive.

SDO error message ABORT The SDO error message ABORT is output as response to an error in an
SDO transmission. The cause of the error is output in the "error code"
in bytes 4…7.

Fig. 7.1 SDO error message ABORT

Client Server

1 2 3 4 5 6 70

COB ID ccd Idx2 Idx1 Sidx Data

error response

80ccd: Byte 4-7
error code
Field bus communication error diagnosis 7-1

Diagnosis and troubleshooting IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Causes of a synchronous error Possible causes of a synchronous error are:

• error while executing an action or control command

• parameter value outside the permissible value range

• illegal action or control command during a running process

• access to an unknown object (index/subindex)

Table 7.1, page 7-2 shows all error messages that can occur during
data exchange with the compact drive.

The byte sequence must be exchanged before evaluating according to
the Intel format.

Example

Error code "0609 0011h" is sent as "11h 00h 09h 06h".

Error code Meaning

0504 0001h Command Code (ccd) not correct or unknown

0601 0002h No write access, because read object (ro)

0602 0000h Object not in object directory

0607 0010h Data type and parameter length do not match

0609 0011h Subindex not supported

0609 0030h Parameter value to large or too small
(only relevant for write access)

0800 xxxxh Manufacturer-specific error "xxxx" corresponds to the error
number of the compact drive. The error number can be
found in the controller manual error number table

Table 7.1 Error codes
7-2 Error messages

IFX-CANopen DS301 Diagnosis and troubleshooting
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
7.2.2 Asynchronous errors

If device errors occur, the compact drive monitoring devices report an
asynchronous error.

For asynchronous errors that result in a movement interruption, the
compact drive sends an EMCY message.

An asynchronous error is reported via various objects:

• In T_PDO4, driveStat and in the parameter
Status.driveStat, 28:2 with the following bits:

– Bit 15, x_err

Error status during processing:
evaluate cause via bits 5 and 6

– Bit 5

Error message of an internal monitoring signal
(e.g. overtemperature)
The error information is enter the
Status.FltSig_SR, 28:18 parameter bit-coded.

– Bit 6

Error message of an external monitoring signal
(e.g. movement interruption by limit switch)
The exact cause is entered in the Status.Sign_SR,
28:15 parameter bit-coded.

– Bit 7
Controller warning message
(e.g. warning of overtemperature)
The error information is entered in the Status.WarnSig,
28:10 parameter bit-coded.

• The last error cause is also saved in the parameter
Status.StopFault, 32:7 as error number.
The list of error numbers and their meaning can be found in
chapter 7, "Diagnosis and troubleshooting", of the controller
manuals.

• As emergency message (EMCY) with the corresponding error
number. The error number is identical to that in the parameter
Status.StopFault, 32:7.
For information on the EMCY object see Kapitel 4.4, "Emergency
service", Seite 4-28.
Error messages 7-3

Diagnosis and troubleshooting IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Error message

If the controller sets the x_err bit, it stops movement mode
immediately and responds in accordance with the error class by
braking or immediately switching off the power amplifier. Bit 6 or
bit 7 is set together with bit15, x_err. The meaning of the error
message must be determined via the corresponding parameters.

Fig. 7.2 Evaluating asynchronous errors

As a simplified procedure the master device can also simply evaluate
the emergency messages and respond or visualise according to the
error numbers.

For more information on parameters, error classes and troubleshooting
see chapter 7, "Diagnosis and troubleshooting" in the controller
manual.

7.2.3 Errors in operational control via PDOs

Movement jobs can be triggered and modified with the R_PDO4. If the
compact drive cannot process the request, it sends the master device
an EMCY message and sets one of the error bits in the T_PDO4.

For more information see chapter 4.3.4, "Send PDO T_PDO4
(compact drive → master)".

Evaluate
Status.StopFault, 32:7

Check for asynchronous error
Monitor slave
device status

x_err = 1
?

yes

Warning

Evaluate
Status.FltSig_SR, 28:18

Evaluate
Status.WarnSig, 28:10

Evaluate
Status.Sign_SR, 28:15

warning
=1?

yes

no

no

FltSig = 1
?

yes

no

Sign_Sr
= 1?

yes

no

Internal signal

External signal

Other error
7-4 Error messages

IFX-CANopen DS301 Service
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
8 Service

8.1 Service address

Contact your local dealer with any questions or problems. Your dealer
will be happy to give you the name of a customer service outlet in your
area.
Service address 8-1

Service IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
8-2 Service address

IFX-CANopen DS301 Object directory
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
9 Object directory

9.1 Overview

This object list describes the protocol for the compact drive in
accordance with CANopen DS301 only. The objects for controlling the
operating modes, operating functions and all parameters can be found
in the compact drive manual.

9.1.1 Specifications for the objects

Index This index shows the position of the object in the object directory. The
index value is shown in hexadecimal.

Object code The object code shows the data structure of the object.

Access ro: Read Only
Value can only be read

rw: Read Write
Value can be read and written

wo: Write Only
Value can only be written

Object code Meaning Coding

VAR A single value, for example of the type
Integer8, Unsigned32 or Visible String8.

7

ARR (ARRAY) A data field in which every entry is of the same
data type.

8

REC (RECORD) A data field that contains entries that are a
combination of single data types.

9

Data type Range of values Data length

Boolean 0 = false, 1 = true 1 byte

INT8 -128.. +127 1 byte

INT16 -32768.. +32767 2 bytes

INT32 -2147483648.. +2147483647 4 bytes

UINT8 0.. 255 1 byte

UINT16 0.. 65535 2 bytes

UINT32 0.. 4294967295 4 bytes

Visible String8 ASCII characters 8 bytes

Visible String16 ASCII characters 16 bytes
Overview 9-1

Object directory IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
PDO R_PDO: Mapping for R_PDO possible

T_PDO: Mapping for T_PDO possible

No entry: PDP mapping not possible with the object

Range of values Show the permissible range in which the object value is defined and
valid.

Default value The default values can be configured with the stored factory setting.

Can be saved Yes:values can be saved in the compact drive memory and are
available again after switching on.

–: Values are lost when the compact drive is switched off.

9.1.2 Objects, overview

Index Subindex Designation Obj.code Data type Access

1000h device type VAR UINT32 ro

1001h error register VAR UINT8 ro

1008h manufacturer device name VAR String ro

100Ch guard time VAR UINT16 rw

100Dh life time factor VAR UINT8 rw

1015h inhibit time EMCY VAR UINT16 rw

1018h identity object RECORD Identity ro

1018h 0 number of elements VAR UINT8 ro

1018h 1 vendor id VAR UINT32 ro

1018h 2 product code VAR UINT8 ro

1403h receive PDO4 communication parameter RECORD PDO_Com ro

1403h 0 number of elements VAR UINT8 ro

1403h 1 COB-ID used by R_PDO4 VAR UINT32 ro

1403h 2 transmission type R_PDO4 VAR UINT8 rw

1403h 3 inhibit time R_PDO4 VAR UINT16 rw

1403h 4 compatibility entry R_PDO4 VAR UINT8 rw

1403h 5 event timer R_PDO4 VAR UINT16 rw

1603h receive PDO4 mapping RECORD PDO_Map ro

1603h 0 number of elements VAR UINT8 ro

1603h 1 1st mapped object R_PDO4 VAR UINT32 ro

1603h 2 2nd mapped object R_PDO4 VAR UINT32 ro
9-2 Overview

IFX-CANopen DS301 Object directory
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
1603h 3 3rd mapped object R_PDO4 VAR UINT32 ro

1603h 4 4th mapped object R_PDO4 VAR UINT32 ro

1803h transmit PDO4 communication parameter RECORD PDO_Com ro

1803h 0 number of elements VAR UINT8 ro

1803h 1 COB-ID used by T_PDO4 VAR UINT32 ro

1803h 2 transmission type T_PDO4 VAR UINT8 rw

1803h 3 inhibit time T_PDO4 VAR UINT16 rw

1803h 4 reserved T_PDO4 VAR UINT8 rw

1803h 5 event timer T_PDO4 VAR UINT16 rw

1A03h transmit PDO4 mapping RECORD PDO_Map ro

1A03h 0 number of elements VAR UINT8 ro

1A03h 1 1st mapped object T_PDO4 VAR UINT32 ro

1A03h 2 2nd mapped object T_PDO4 VAR UINT32 ro

1A03h 3 3rd mapped object T_PDO4 VAR UINT32 ro

1A03h 4 4th mapped object T_PDO4 VAR UINT32 ro

Index Subindex Designation Obj.code Data type Access
Overview 9-3

Object directory IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
9.2 Objects of the compact drive

1000h Device type

The object shows the implemented device profile and the device type.

Object description

Values description

1001h Error register

The object shows the error status of the compact drive. The detailed
error cause can be determined with the manufacturer-specific object
Status.StopFault 32:7 .

Errors are signalled by an EMCY message as soon as they occur.

Object description

Values description

Index 1000h

Object name device type
Object code VAR
Data type Unsigned32

Subindex 00h, device type

Meaning Device type and profile
Access read-only
PDO mapping –
Range of values –
Default value 0
Can be saved –

Index 1001h
Object name error register
Object code VAR
Data type Unsigned8

Subindex 00h, error register

Meaning error register
Access read-only
PDO mapping –
Range of values –
Default value –
Can be saved –
9-4 Objects of the compact drive

IFX-CANopen DS301 Object directory
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Bit coding, subindex 00h

1008h Manufacturer device name

The object shows the device name (eg. "IFS ")

Object description

Values description

100Ch Guard time

The object shows the time span for node guarding of an NMT slave.

Object description

Values description

The time span for node guarding of an NMT master device is derived
from the "guard time" period multiplied by the "life time" factor, object
life time factor (100Dh).

The period can be modified in the Pre-Operational NMT status.

Bit Access Value Meaning

0 ro – Error! (generic error)

1 ro – Current

2 ro – Voltage

3 ro – Temperature

4 ro – Communication profile (communication error)

5 ro – Device profile (device profile error)

6 ro – Reserved

7 ro – Manufacturer specific

Index 1008h

Object name manufacturer device name
Object code VAR
Data type String

Subindex 00h, manufacturer device name

Meaning manufacturer name
Access read-only
PDO mapping –
Range of values –
Default value –
Can be saved –

Index 100Ch

Object name guard time
Object code VAR
Data type Unsigned16

Subindex 00h, guard time

Meaning Time span for node guarding [ms]
Access read-write
PDO mapping –
Range of values 0...65535
Default value 0
Can be saved –
Objects of the compact drive 9-5

Object directory IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
100Dh Life time factor

The object shows the factor that combined with "guard time" period
yields the time interval for node guarding of an NMT master device.
Within this period the NMT slave device waits for a monitoring request
by node guarding by the NMT master device.

life time = guard time * life time factor

The value "0" disables the NMT master device monitoring.

Object description

Values description

If the node guarding by the NMT master device remains off during the
"life time" time interval, the Positioning controller reports an error and
switches to error status.

The time factor can be modified in the Pre-Operational NMT status.

The "guard time" period is configured with the object Guard time
(100Ch).

1015h Inhibit time emergency message

The object specifies the waiting period for the repeated transmission of
EMCY messages as a multiple of 100µs.

Object description

Values description

Index 100Dh

Object name life time factor
Object code VAR
Data type Unsigned8

Subindex 00h, life time factor

Meaning Time factor for the node guarding protocol
Access read-write
PDO mapping –
Range of values 0...255
Default value 0
Can be saved –

Index 1015h

Object name inhibit time EMCY
Object code VAR
Data type Unsigned16

Subindex 00h, inhibit time EMCY
Meaning Waiting time for repeated transmission of an EMCY
Access read-write
PDO mapping –
Range of values 0...65535
Default value 0
can be saved –
9-6 Objects of the compact drive

IFX-CANopen DS301 Object directory
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
1018h Identity Object

The object shows information on the device. Subindex 01h (vendor ID)

contains the identification identifier of the manufacturer, subindex 02h

(product ID) shows the manufacturer-specific product code.

Values description Index 1018h

Object name Identity Object
Object code RECORD
Data type Identity

Subindex 00h, number of elements
Meaning Number of subindices
Access read-only
PDO mapping –
Range of values 1...4
Default value 2
Can be saved –

Subindex 01h, vendor id

Meaning Vendor ID
Access read-only
PDO mapping –
Range of values 0...4294967295
Default value 0x0100002E
Can be saved –

Subindex 02h, product code

Meaning Product code
Access read-only
PDO mapping –
Range of values 0...4294967295
Default value 0x01
Can be saved –
Objects of the compact drive 9-7

Object directory IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
1403h Receive PDO4 communication parameter

The object saves settings for the fourth receive PDO R_PDO4.

Object description

Values description

Index 1403h

Object name receive PDO4 communication parameter
Object code RECORD
Data type PDO Communication Parameter

Subindex 00h, number of elements

Meaning Number of subindices
Access read-only
PDO mapping –
Range of values –
Default value 5
Can be saved –

Meaning Identifier of the R_PDO4
Subindex 01h, COB-ID R_PDO4

Access read-only
PDO mapping –
Range of values –
Default value 0x40000500+nodeID
Can be saved –

Subindex 02h, transmission type R_PDO4
Meaning Transmission type
Access read-write
PDO mapping –
Range of values –
Default value 254
Can be saved –

Subindex 03h, inhibit time R_PDO4

Meaning Blocking period for bus access (1=100 µsec)
Access read-write
PDO mapping –
Range of values 0...65535
Default value 0
Can be saved –

Subindex 04h, compatibility entry R_PDO4

Meaning only for compatibility purpose
Access read-write
PDO mapping –
Range of values –
Default value –
Can be saved –
9-8 Objects of the compact drive

IFX-CANopen DS301 Object directory
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Bit assignment subindex 01h

Bit 31

An R_PDO can only be used when bit 31="0".

Bit 30 RTR bit

If a device supports R_PDOs with RTR (remote transmission request),
it can request a PDO from a PDO producer with RTR = "0" in
accordance with the producer-consumer relationship.

The compact drive cannot request PDOs, but it can respond to the
request for a PDO; see RTR bit for T_PDO1 settings (1800h).

Bit coding, subindex 02h The controller for evaluating R_PDO data is specified via subindex
02h. The values 241..251 are reserved.

Subindex 05h, event timer R_PDO4

Meaning Time setting for event triggering
Access read-write
PDO mapping –
Range of values –
Default value 0
Can be saved –

Bit Access Value Meaning

31 rw 0b 0: PDO is active
1: PDO is inactive

30 ro 0b 0: RTR (see below) is possible
1: RTR not allowed

29 ro 0b 0: 11-bit identifier (CAN 2.0A)
1: 29-bit identifier (CAN 2.0B)

28-11 ro 0000h Only relevant is bit 29=1, not used by compact
drive.

10-7 rw 0100h Function code, bit 10-7 of the COB-ID

6-0 ro – Node address, bit 6-0 of the COB-ID

Transmission
type

cyclic acyclic synchronous asynchronous RTR-
controlled

0 – X X – –

1-240 X – X – –

252 – – X – X

253 – – – X X

254 – – – X –

255 – – – X –
Objects of the compact drive 9-9

Object directory IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
If an R_PDO is transmitted synchronously (transmission type=0..252),
the device evaluates the received data in accordance with the SYNC
object.

• With acyclic transmission (transmission type=0) the evaluation is
linked to the SYNC object, but not the transmission of the PDO.
A received PDO message is evaluated with the following SYNC.
A value between 1 and 240 shows the number of SYNC cycles
after which a received PDO is evaluated.

The values 252 to 254 are relevant for updating T_PDOs but not for
sending them.

• 252: updating send data with receipt of the next SYNC

• 253: updating send data with receipt of a request from a PDO
consumer

• 254: updating data event-driven, the triggering event is specified
manufacturer-specific

R_PDOs with the value 255 are updated immediately with receipt of
the PDOs. Triggering event is the data that are sent in accordance with
the definition of the device profile in the PDO.

Subindex 03h The "inhibit time" time interval is only relevant for T_PDOs.

A T_PDO is sent again at the earliest after expiry of the "inhibit time"
time interval. The value is output as a multiple of 100 µs, but the drive
rounds it out to whole milliseconds.

Subindex 04h The value is reserved and is not used. Write or read access triggers an
SDO error message.

Subindex 05h The event timer time interval is only relevant for T_PDOs.

A T_PDO is sent again after expiry of the event timer time interval. The
time interval is restarted simultaneously. The transmission type must
be configured via subindex 02h to the value 254 or 255.

Settings R_PDO4 is processed asynchronously and event-driven.

The byte assignment of the R_PDO4 is specified via the PDO mapping
with the Receive PDO4 mapping (1603h) object and cannot be

modified. The assignment is described in chapter 4.3.3, "Receive PDO
R_PDO4 (master → compact drive)".

The COB-ID of the object can be modified in the Pre-Operational NMT
status.
9-10 Objects of the compact drive

IFX-CANopen DS301 Object directory
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
1603h Receive PDO4 mapping

The object shows which objects are mapped in R_PDO4 and
transmitted with the PDO. When reading the object subindex 00h the
number of mapped objects is given.

Object description

Values description

Index 1603h
Object name receive PDO4 mapping
Object code RECORD
Data type PDO mapping

Subindex 00h, number of elements
Meaning Number of subindices
Access read-only
PDO mapping –
Range of values –
Default value 4
Can be saved –

Subindex 01h, 1st mapped object R_PDO4

Meaning First object for the mapping in R_PDO4
Access read-only
PDO mapping –
Range of values –
Default value 0x301E0108
Can be saved –

Subindex 02h, 2nd mapped object R_PDO4

Meaning Second object for the mapping in R_PDO4
Access read-only
PDO mapping –
Range of values –
Default value 0x301E0208
Can be saved –

Subindex 03h, 3rd mapped object R_PDO4

Meaning Third object for the mapping in R_PDO4
Access read-only
PDO mapping –
Range of values –
Default value 0x301E0510
Can be saved –

Subindex 04h, 4th mapped object R_PDO4

Meaning Fourth object for the mapping in R_PDO4
Access read-only
PDO mapping –
Range of values –
Default value 0x301E0620
Can be saved –
Objects of the compact drive 9-11

Object directory IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
Bit coding from subindex 01h Every subindex entry from subindex 01h shows the object and the byte
length of the object. The object is identified via index and subindex that
refers to the object directory of the device.

Settings The assignment of the R_PDO4 is fixed and cannot be changed.

The assignment is described in chapter 4.3.3, "Receive PDO R_PDO4
(master → compact drive)".

1803h Transmit PDO4 communication parameter

The object saves settings for the fourth send PDO T_PDO4.

Object description

Values description

Bit Meaning

31..16 Index

15..8 Subindex

7..0 Object length in bytes

Index 1803h

Object name Transmit PDO4 communication parameter
Object code RECORD
Data type PDO Communication Parameter

Subindex 00h, number of elements

Meaning Number of subindices
Access read-only
PDO mapping –
Range of values –
Default value 5
can be saved –

Subindex 01h, COB-ID used by T_PDO4

Meaning Identifier of the T_PDO4
Access read-only
PDO mapping –
Range of values –
Default value 0x00000480+nodeID
Can be saved –

Subindex 02h, transmission type T_PDO4

Meaning Transmission type
Access read-write
PDO mapping –
Range of values –
Default value 254
Can be saved –
9-12 Objects of the compact drive

IFX-CANopen DS301 Object directory
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
The meaning of the bit states and subindex values is described with
the object receive PDO4 communication parameters (1403h).

Settings R_PDO4 is sent asynchronously and event-driven.

The byte assignment of the T_PDO4 is specified via the PDO mapping
with the Transmit PDO4 mapping (1A03h) object and cannot be

modified. The assignment is described in chapter 4.3.4, "Send PDO
T_PDO4 (compact drive → master)".

The COB-ID of the object can be modified in the Pre-Operational NMT
status.

Subindex 03h, inhibit time T_PDO4

Meaning Blocking period for bus access (in [100 µsec]). The
value is round off to whole milliseconds by the drive.

Access read-write
PDO mapping –
Range of values 0...65535
Default value 0
Can be saved –

Subindex 04h, reserved T_PDO4

Meaning reserved (only for compatibility purpose)
Access read-write
PDO mapping –
Range of values –
Default value –
Can be saved –

Subindex 05h, event timer T_PDO4
Meaning Time setting for event triggering
Access read-write
PDO mapping –
Range of values –
Default value 0
Can be saved –
Objects of the compact drive 9-13

Object directory IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
1A03h Transmit PDO4 mapping

The object shows which objects are mapped in T_PDO4 and
transmitted with the PDO. When reading the object subindex 00h the
number of mapped objects is given.

Object description

Values description

The meaning of the bit states is described with the object receive
PDO4 mapping (1603h).

Index 1A03h

Object name transmit PDO4 mapping
Object code RECORD
Data type PDO mapping

Subindex 00h, number of elements

Meaning Number of subindices
Access read-only
PDO mapping –
Range of values –
Default value 4
Can be saved –

Subindex 01h, 1st mapped object T_PDO4

Meaning First object for the mapping in T_PDO4
Access read-only
PDO mapping –
Range of values –
Default value 0x301E0410
Can be saved –

Subindex 02h, 2nd mapped object T_PDO4

Meaning Second object for the mapping in T_PDO4
Access read-only
PDO mapping –
Range of values –
Default value 0x301E0308
Can be saved –

Subindex 03h, 3rd mapped object T_PDO4

Meaning Third object for the mapping in T_PDO4
Access read-only
PDO mapping –
Range of values –
Default value 0x301E0708
Can be saved –

Subindex 04h, 4th mapped object T_PDO4

Meaning Fourth object for the mapping in T_PDO4
Access read-only
PDO mapping –
Range of values –
Default value 0x301E0820
Can be saved –
9-14 Objects of the compact drive

IFX-CANopen DS301 Object directory
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Settings The PDO assignment for T_PDO4 cannot be modified. The
assignment is described in chapter 4.3.4, "Send PDO T_PDO4
(compact drive → master)".
Objects of the compact drive 9-15

Object directory IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
9-16 Objects of the compact drive

IFX-CANopen DS301 Glossaries
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
10 Glossaries

10.1 Abbreviations

Abbreviation Meaning

CAN Controller Area Network, standardized bus system

CDD Command Code, a component of an SDO message

COB Communication Object, basic object for transport of data in a CAN network.
2048 COBs are permissible in a CAN network and can be identified by a
unique COB-ID.

COB-ID Communication object identifier, component of the CANopen message for
identification of objects and specification of bus access priorities

DS Draft standard draft standard

DSP Draft standard proposal, proposed standard draft

PDO Process Data Object, object for fast transport of data in the CAN network. They are
classified into T_PDO (Transmit PDO) for sending data and R_PDO (Receive PDO)
for receiving data

R_PDO Receive Process Data Object, process data from the master device to the drive

R_SDO Receive Service Data Object, configuration data from the master device to the drive

RTR Remote Transmission Request

SDO Service Data Object, object for transport of system data, including distributed over
multiple SDO messages

SYNC Synchronisation object, object for synchronising devices on the network node-ID node
address

T_PDO Transmit Process Data Object, process data from the drive to the master device

T_SDO Transmit Service Data Object, configuration data from the drive to the master device
Abbreviations 10-1

Glossaries IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
10.2 Glossary

Broadcast Type of data transmission in the network; a device sends a message to all devices on
the network

Bus arbitration Device on the field bus for prevention of data collisions when multiple bus devices
transmit simultaneously. The station that is ready to transmit and has the higher
priority receives the authority. The priority is specified by the COB-ID.

CAN connection Communications interface of the positioning drive for connection to the CAN bus

Client First the sender, then the receiver of CAN messages in the client-server relationship
starts the transmission with a transmission to the server; the reference point is the
server object directory.

Consumer Receiver of CAN messages in the producer-consumer relationship of network devices
(consumer).

Default values Factory setting, values preset on delivery from the factory

Error class Classification of operational faults into groups corresponding to the error responses

Event timer The sequence of an event-driven time interval triggers transmission of a PDO
message Event-driven time intervals can be set in parallel to other event-driven
functions such as to change the signal of a monitored device input (event timer)

Heartbeat Heartbeat is a monitoring function with which a network device can check whether
another network device is ready to send and receive (heartbeat)

Index The index is 16-bit long value with which every object in the object directory of a
device can be uniquely addressed.

Inhibit time A minimum waiting time for repeated transmission can be set for a PDO to reduce the
data transfer load on the field bus. After the first transmission the PDO is sent again
only after expiry of the waiting time (inhibit time)

Master First the sender, then the receiver of CAN messages in a master-slave relationship of
network devices; the master device control the communications of the slaves (master)

Node address Address of a device in the network; every device in the network has a unique node
address

Node guarding Node guarding is a monitoring function with which one or more network devices is
regularly checked for readiness to send and receive (node guarding)

Parameter Device data and values that can be set by the user.

Producer Creator of CAN messages in the producer-consumer relationship of network devices
(producer)

Server First the sender, then the receiver of CAN messages in the client-server relationship
responds to the request of a clients; the reference point is the server object directory
(server)
10-2 Glossary

IFX-CANopen DS301 Index
Ic

lA
 IF

X
-C

A
N

op
en

 D
S

30
1

E
di

tio
n

-0
00

 V
er

si
on

 0
5.

03
Index

A
ANSI Z535.4 2-2

C
CAN bus

Parameter 4-17
Communications interface

CAN bus mode
Parameter 4-17

D
Directives 1-1

L
Literature 1-1

M
Maintenance 8-1

N
Note symbol 1-1

P
Parameter

CAN bus mode 4-17

S
Safety

Intended use 2-1
Qualification of the personnel 2-1
Structure of the safety instructions 2-2

Service 8-1
Service address 8-1
Standards 1-1

W
Written conventions 1-1
I-1

Index IFX-CANopen DS301

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03
I-2

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03

IFX-CANopen DS301 Supplement
Supplement

Ic
lA

 IF
X

-C
A

N
op

en
 D

S
30

1
E

di
tio

n
-0

00
 V

er
si

on
 0

5.
03

Supplement IFX-CANopen DS301

	Important information
	Table of contents
	Written conventions and note symbols
	1 Introduction
	1.1 Documentation and literature
	1.2 Directives and standards

	2 Safety
	2.1 Qualifications of personnel
	2.2 Intended use
	2.2.1 Ambient conditions
	2.2.2 Intended use

	2.3 Safety instructions
	2.3.1 Structure of the safety instructions

	3 Basics
	3.1 CAN bus
	3.2 CANopen technology
	3.2.1 CANopen description language
	3.2.2 Communications layers
	3.2.3 Objects
	3.2.4 CANopen profiles

	3.3 Field bus devices in the CAN bus
	3.4 Operating modes and functions in field bus operation

	4 CANopen communication
	4.1 Communications profile
	4.1.1 Communications objects
	4.1.2 Communications relationships

	4.2 Service data communication (SDO communication)
	4.2.1 Overview
	4.2.2 SDO data exchange
	4.2.3 SDO message
	4.2.4 Writing and reading SDO data

	4.3 Process data communication (PDO communication)
	4.3.1 PDO data exchange
	4.3.2 Dynamic and static PDO mapping
	4.3.3 Receive PDO R_PDO4 (master ® compact drive)
	4.3.4 Send PDO T_PDO4 (compact drive ® master)

	4.4 Emergency service
	4.5 Synchronisation
	4.5.1 Synchronisation periods
	4.5.2 Synchronous data transmission

	4.6 Network management objects
	4.6.1 NMT services for controlling the compact drive
	4.6.2 NMT services for connection monitoring

	5 Installation and setup
	5.1 Installation
	5.2 Commissioning field bus connection
	5.2.1 Starting field bus operation
	5.2.2 Troubleshooting

	6 Examples for field bus operation
	6.1 Overview
	6.2 Using SDO commands
	6.2.1 Writing parameters
	6.2.2 Read parameter
	6.2.3 Synchronous errors

	6.3 Changing operating states with PDO4
	6.3.1 Switch power amplifier on and off
	6.3.2 Triggering Quick-Stop
	6.3.3 Resetting errors

	6.4 Examples for the operating states with PDO4
	6.4.1 Point-to-point mode - absolute positioning
	6.4.2 Point-to-point mode - relative positioning
	6.4.3 Speed mode
	6.4.4 Dimension setting
	6.4.5 Reference movement

	6.5 Error signalling via PDO4
	6.5.1 Synchronous errors
	6.5.2 Asynchronous errors

	7 Diagnosis and troubleshooting
	7.1 Field bus communication error diagnosis
	7.2 Error messages
	7.2.1 Synchronous errors
	7.2.2 Asynchronous errors
	7.2.3 Errors in operational control via PDOs

	8 Service
	8.1 Service address

	9 Object directory
	9.1 Overview
	9.1.1 Specifications for the objects
	9.1.2 Objects, overview

	9.2 Objects of the compact drive

	10 Glossaries
	10.1 Abbreviations
	10.2 Glossary

	Index
	Supplement

